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Preface 

Reliability and maintenance coupled with quality represent the three ma-
jor columns of today’s modern technology and life. The impact of these 
factors on the success and survival of companies and organisations is more 
important than ever before. Although these disciplines may be viewed as 
non-profitable, experience has shown that neglecting or omitting them can 
lead to severe consequences. This is underlined by the dramatically in-
creasing number of callbacks. In fact, over the last fifteen years the num-
ber of callbacks has tripled.  

 
Just recently a huge recall in the toy industry occurred due to lead con-

taminated toys. In the automotive industry callbacks arise regularly for 
several varying reasons. Since products are becoming ever more complex 
and the available time for development is continuously decreasing, the 
necessity for and influence of the three pillars: reliability, maintenance and 
quality, will only continue to increase in the future. Considering one clas-
sic example of a complex product, the passenger car, while bearing the 
callback statistics in mind, it is not surprising that the attributes “reliabil-
ity” and “quality” are the two most important considerations for customers 
buying a new car. 

 
This trend has been observed and confirmed over several years. The in-

creasing demand on reliability methods combined with the importance of 
studying and understanding them led me to the decision to compose a book 
about reliability and maintenance. Originally, this book was only published 
in German, but requests from colleagues and companies all over Europe 
and the USA induced me to bring out the English translation as well. This 
book considers the basics of reliability and maintenance along with further 
improvements and enhancements which were found by extensive research 
work. In the following chapters, fundamentals are combined with practical 
experiences and exercises, thus allowing the reader to gain a more detailed 
overview of these crucial subjects. 

 
The present book could not have originated without the help of the fol-

lowing persons, to whom I wish to express my appreciation. First of all, 
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many thanks to Prof. Gisbert Lechner, who was initiator of the German 
edition. I am grateful to Mrs. Alicia Schauz und Mr. Karsten Pickard for 
the translation from German into English. Through their editorial and or-
ganisational work accompanied by their dedication and commitment they 
together enabled and formed this book. I also would like to thank Ms. An-
drea Dieter for editing and overworking the illustrations. My exceptional 
thanks goes to Mr. G.J. McNulty for his useful editorial suggestions. Fi-
nally, I would like to thank the publishing company Springer for their 
helpful and professional cooperation. 

 
 
 
  

Stuttgart, Autumn 2007 Prof. Dr. B. Bertsche 
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1 Introduction 

Today, the term reliability is part of our everyday language, especially 
when speaking about the functionality of a product. A very reliable prod-
uct is a product that fulfils its function at all times and under all operating 
conditions. The technical definition for reliability differs only slightly by 
expanding this common definition by probability: reliability is the prob-
ability that a product does not fail under given functional und environ-
mental conditions during a defined period of time (VDI guidelines 4001). 
The term probability takes into consideration, that various failure events 
can be caused by coincidental, stochastic distributed causes and that the 
probability can only be described quantitatively. Thus, reliability includes 
the failure behaviour of a product and is therefore an important criterion 
for product evaluation. Due to this, evaluating the reliability of a product 
goes beyond the pure evaluation of a product’s functional attributes.  

According to customers interviewed on the significance of product at-
tributes, reliability ranks in first place as the most significant attribute, see 
Figure 1.1. Only costs are sometimes considered to play a more important 
role. Reliability, however, remains in first or second place. Because reli-
ability is such an important topic for new products, however it does not 
maintain the highest priority in current development. 
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Figure 1.1. Car purchase criteria (DAT-Report 2007) 

„It is impossible to avoid all faults“ 
  

„Of cause it remains our task to avoid 
 faults if possible“ 

 

Sir Karl R. Popper 

B. Bertsche, Reliability in Automotive and Mechanical Engineering. VDI-Buch,  
doi: 10.1007/978-3-540-34282-3_1, © Springer-Verlag Berlin Heidelberg 2008 
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Surveys show that customers desire reliable products.  How does prod-
uct development reflect this desire in reality? Understandably, companies 
protect themselves with statements concerning their product reliability. No 
one wants to be confronted with a lack of reliability in their product. Often, 
these kinds of statements are kept under strict secrecy. An interesting sta-
tistic can be found at the German Federal Bureau of Motor Vehicles and 
Drivers (Kraftfahrt-Bundesamt) in regards to the number of callbacks due 
to critical safety defects in the automotive industry: in the last ten years the 
amount of callbacks has tripled (55 in 1998 to 167 in 2006), see Figure 1.2. 
The related costs have risen by the factor of eight! It is also well known, 
that guarantee and warranty costs can be in the range of a company’s profit 
(in some cases even higher) and thus make up 8 to 12 percent of their turn-
over. The important triangle in product development of cost, time and 
quality is thus no longer in equilibrium. Cost reductions on a product, the 
development process and the shortened development time go hand in hand 
with reduced reliability.  
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Figure 1.2. Development of callbacks in automotive industry 

 
Today’s development of modern products is confronted with rising 

functional requirements, higher complexity, integration of hardware, soft-
ware and sensor technology and with reduced product and development 
costs. These, along with other influential factors on the reliability, are 
shown in Figure 1.3.  
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Figure 1.3. Factors which influence reliability 
 
To achieve a high customer’s satisfaction, system reliability must be ex-

amined during the complete product development cycle from the view-
point of the customer, who treats reliability as a major topic. In order to 
achieve this, adequate organizational and subject related measures must be 
taken. It is advantageous that all departments along the development chain 
are integrated, since failures can occur in each development stage. Meth-
odological reliability tools, both quantitative and qualitative, already exist 
in abundance and when necessary, can be corrected for a specific situation. 
A choice in the methods suitable to the situation along the product life 
cycle, to adjust them respectively to one another and to implement them 
consequently, see Figure 1.4, is efficacious. 
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Figure 1.4. Reliability methods in the product life cycle  
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A number of companies have proven, even nowadays, that it is possible 
to achieve very high system reliability by utilizing such methods.  

The earlier reliability analyses are applied, the greater the profit. The 
well-known “Rule of Ten” shows this quite distinctly, see Figure 1.5. In 
looking at the relation between failure costs and product life phase, one 
concludes that it is necessary to move away from reaction constraint in 
later phases (e.g. callbacks) and to move towards preventive measures 
taken in earlier stages. 
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Figure 1.5. Relation between failure costs and product life phase 
 

The easiest way to determine the reliability of a product is in hindsight, 
when failures have already been detected. However, this information is 
used for future reliability design planning. As mentioned earlier, however, 
the most sufficient and ever more required solution is to determine the 
expected reliability in the development phase. With the help of an appro-
priate reliability analysis, it is possible to forecast the product reliability, to 
identify weak spots and, if needed, comparative tests can be carried out, 
see Figure 1.6. 

For the reliability analysis quantitative or qualitative methods can be 
used. The quantitative methods use terms and procedures from statistics 
and probability theory. In Chapter 2 the most important fundamental terms 
of statistics and probability theory are discussed. Furthermore, the most 
common lifetime distributions will be presented and explained. The 
Weibull distribution, which is mainly and commonly used in mechanical 
engineering, will be explained in detail.   
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Figure 1.6. Securing of system reliability 

 
Chapter 3 illustrates an example of a complete reliability analysis for a 

simple gear transmission. The described procedure is based on the funda-
mentals and methods described in the previous chapter.  

The most well-known qualitative reliability method is the FMEA (Fail-
ure Mode and Effects Analysis). The essential contents, according to the 
current standard in the automotive industry (VDA 4.2), are shown in Chap-
ter 4.  

The fault tree analysis, described in Chapter 5, can be used either as a 
qualitative or as a quantitative reliability method.  

One main focus of this book is the analysis of lifetime tests and damage 
statistics, which will be dealt with in Chapter 6. With these analyses gen-
eral valid statements concerning failure behaviour can be made. In order to 
describe the lifetime distribution the Weibull distribution is used, which is 
the most common distribution in mechanical engineering. Next to the 
graphical analyses of failure times, analytical analyses and their theoretical 
basics will be discussed. The important terms "order statistic" and "confi-
dence range" will be explained in detail.  

There is little collected and edited information pertaining the failure be-
haviour of mechanical components. However, the knowledge of the failure 
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behaviour of a component is necessary, in order to be able to predict the 
expected reliability under similar application conditions. With the help of 
system theory it is also possible to calculate the expected failure behaviour 
of a system. In Chapter 7 results from a reliability data base for the ma-
chine components gear wheels, axles and roller bearings will be presented. 
In many cases the indicated Weibull parameters can prove to serve as a 
first orientation.  

To prove reliabilities before the start of production, it is obligatory to 
carry out the appropriate tests. Here, the amount of test specimens, the 
required test period length and the achievable confidence level may be of 
interest. In Chapter 8 the planning of reliability tests will be described.  

Each quantitative reliability method portrays a kind of enhanced fatigue 
strength calculation. The basic principles of a lifetime calculation for ma-
chine components are summarized in Chapter 9.  

The reliability and the availability of systems, which include repairable 
elements, can be determined by various calculation models. Chapter 10 
describes methods in their differing complexity and their assessment for 
repairable elements.   

In order to achieve high system reliability, an integrated process treat-
ment is compulsory. For this, a reliability safety program has been devel-
oped. This program will be described with its basic elements in Chapter 
11. In conclusion, this chapter offers a complete overview on an optimal 
reliability process. 

For all the chapters there are problems at the end of each one and the so-
lutions can be found at the end of chapter 11.  
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2 Fundamentals of Statistics and Probability 
Theory  

A qualitative reliability analysis provides a conceptual basis for the de-
gree of confidence placed on a particular component or system and should 
be capable in the incipient stages of design for alteration of these compo-
nents. A quantitative reliability prognosis gives a probability assessment of 
the component based on well founded statistical techniques. This chapter 
therefore, outlines the various methods of both qualitative and quantitative 
methods shown in Figure 2.1. 
 

Design Phase

Goals: - Prognosis of the expected reliability
- Recognition and elimination of weak points
- Execution of comparative studies

Reliability in the

-
-
-

systematical evaluation of the
effects of faults and failures
failure type analysis

Methoden:
• FMEA / FMECA
• FTA
• result action analysis
• check lists
• ...

qualitative

calculation of the expectied 
reliability
failure rate analysis
probability based
reliability prognisis

Method:
• Boole
• Markoff
• FTA
• ...

quantitative

 
 

Figure 2.1. Options for reliability analysis 

The results of the Wöhler tests in Figure 2.2 and Figure 2.3 show this. 
Despite identical conditions and loads, strongly differing down times re-
sulted [2.15]. Out of these results it is not possible to assign a bearable 
cycles-to-failure to a component. The cycles-to-failure nLC or the lifetime t 

B. Bertsche, Reliability in Automotive and Mechanical Engineering. VDI-Buch,  
doi: 10.1007/978-3-540-34282-3_2, © Springer-Verlag Berlin Heidelberg 2008 
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can be seen as random variables, which are subject to a certain statistical 
spread [2.1,  2.5,  2.23,  2.29,  2.33]. When looking at reliability, the desig-
nated range of dispersion between nLC, min and nLC, max as well as which 
down times occur more often are of interest. For this it is necessary to 
know how the lifetime values are distributed. 
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Figure 2.2. Tooth failure – Wöhler test [2.15] with the statistical spread of down 
times 

200             250            300            350           400 450

Load Cycles n ·102

50

%

30

20

10

0

Fa
ilu

re
s

nLC, min nLC, max

LC  
 
Figure 2.3. Histogram for the frequency of the load σ = 640 N/mm2 from Figure 
2.2 
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Terms and procedures from statistics and probability theory can be used 
for down times observed as random events. Therefore, the most important 
terms and fundamentals from statistics and probability theory will be dealt 
with in Section 2.1.   

An introduction and explanations of generally used lifetime distributions 
is presented in Section 2.2. In this section the Weibull distribution, one of 
the most adopted in mechanical engineering will be explained.   

Section 2.3 combines component reliability with system reliability with 
the help of Boolean theory. The Boolean theory can be understood as the 
fundamental system theory. Other system theories can be found in Chapter 
10. 

2.1 Fundamentals in Statistics and Probability Theory  

The failure behaviour of components and systems can be represented 
graphically with various statistical procedures and functions.  How this is 
done will be described in this chapter.  Furthermore, “values” will be dealt 
with, with which the complete failure behaviour can be reduced to individ-
ual characteristic key figures. The result is a very compressed but also 
simplified description of the failure behaviour. 

2.1.1 Statistical Description and Representation of the Failure 
Behaviour  

In the following sections the four different functions for representing 
failure behaviour will be introduced. The individual functions stem from 
the observed failure times and can be carried over to one another. With 
each function certain statements can be made concerning the failure behav-
iour. The use of a certain function therefore depends on a specific question 
posed. 

2.1.1.1 Histogram and Density Function 

The simplest possibility to display failure behaviour graphically is with 
the histogram of the failure frequency, see Figure 2.4. 

The failure times in Figure 2.4a occur at random within a certain time 
period. The representation in Figure 2.4b is the result after sorting the 
strewed failure times. 
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Figure 2.4. Failure times and histogram of the failure frequencies for a stress of 
σ = 640 N/mm2 from Figure 2.2: a) collected failure times in trials; b) sorted fail-
ure times; c) histogram of the failure frequencies with empirical density func-
tion f *(t)   

The denser the data lay together in Figure 2.4b, the more “frequently” 
the failure times occur in that certain period. In order to show this graphi-
cally, a histogram of the failure frequencies is created, Figure 2.4c. 

Therefore, the abscissa is divided into intervals of time which are de-
noted as classes. The quantity of failures is determined for each class.  If a 
failure falls directly between two classes, then it is counted to both classes 
as half a failure. However, by assigning the intervals carefully, this can 
normally be avoided. The quantity of failures in each class is represented 
by beams with various respecting heights. 

For the height or y-coordinate of each beam, the absolute frequency 
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Aabs nh == class onein  failures ofnumber  (2.1) 

or the more common, relative frequency 

n
nh A

rel ==
failures ofnumber  total

class onein  failures ofnumber  (2.2) 

can be used. In Figure 2.4c the beam heights are determined using the rela-
tive frequency, as can be seen on the percent scale for the ordinate. 

The division of the time axis into classes and the assignment of failure 
times to the individual classes is called classification. In this process in-
formation is lost, since a certain amount of failures is assigned to one fre-
quency independent of the exact failure time in the interval. Through the 
classification, each failure within a certain class is assigned the value of 
that class’s mean. However, a loss of information is compensated by a win 
in overview.   

The amount of classes is not always simple to determine. If the classes 
are chosen to be too large, then too much information is lost. In an extreme 
case, there is only one beam, which of course offers little overview. If the 
classes are chosen to be too small, small breaks can occur along the time 
axis. Such breaks interrupt the continuity of the failure behaviour and are 
thus unfit for a correct description. 

The following Equation ( 2.3) can be used for a rough approximation or 
first estimate for the amount of classes [2.30]: 

 valuesalexperimentor  failures ofnumber  Total  classes ofAmount ≈  

nnc ≈  . (2.3) 

Alternative approaches to calculate the amount of classes and the class 
size are given in [2.30]: 

nnc log32,31 ⋅+≈ , (2.4) 

32 nnc ⋅≈ , (2.5) 

nnc log5 ⋅≈ . (2.6) 

Up to a test specimen size of n = 50 the results are comparable, but the 
results differ strongly for larger test specimen sizes. A rule of thumb for 
estimating the class size b of a frequency distributions is based on the 
range R and the test specimen size n: 



www.manaraa.com

12      2 Fundamentals of Statistics and Probability Theory 

n
Rb

log32,31 ⋅+
≈ . (2.7) 

The range R is the difference between the largest and smallest value 
within the test specimen.   

minLC,maxLC, nnR −= . (2.8) 

Instead of in a histogram, the failure behaviour can also be described 
with the often used “empirical density function f  *(t), see Figure 2.5. 
 

200             250            300            350           400 450

Load Cycles n ·102

50

%

30

20

10

0

Fa
ilu

re
s

nLC, min nLC, max

Empirical Density Function f*(t)

LC  
 
Figure 2.5. Histogram of failure frequencies and the empirical density func-
tion f  *(t) 

In the density function the midpoints of the beams in the histogram are 
connected with straight lines. In this way a function between the failure 
time and failure frequency is represented. The term “empirical” for the 
density function implies, that the density function is determined based on a 
test specimen or a limited number of failures.   

The actual “ideal” density function is reached when the amount n of 
tested components is increased. The amount of classes can then be raised 
according to the simple Equation (2.3). This means that the class size be-
comes continually smaller while the y-coordinate of the resulting frequen-
cies remains relatively unchanged.  For the limit n → ∞ the contour of the 
histogram becomes an ever smoother and continuous curve, see Figure 2.6. 
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Figure 2.6. Histogram of failure frequencies and density function f(t) (amount of 
failures n → ∞) 

This limit curve represents the actual density function f(t). Figure 2.6 
has an altered ordinate scale in comparison to Figure 2.5, since the de-
creased class size results in fewer failures per class. 

The limit n → ∞ means that all parts of a large total quantity were tested 
and the exact failure behaviour was determined. Thus, it is possible to shift 
from the experimentally determined frequencies to the theoretical prob-
abilities. The fundamentals for this transition can be explained by the Ber-
noulli law for large numbers. These theoretical coherences will be de-
scribed in more detail in Section 2.1.3. 

The empirical density function f  
*(t) experiences large variations, espe-

cially for a small sample and varies considerably from the ideal density 
functions f(t). The latter is determined from information extracted from 
f(t), as explained in Chapter 6. 

The area under the density function f(t) is equal to 1 if the relative fre-
quencies are used for the y-coordinates. 

The histogram of frequencies as well as the density function describes 
the amount of failures as a function of time. Thus, they offer the clearest 
and most simple possibility to represent the failure behaviour. Along with 
the range of dispersion of failure times one is able to recognize in which 
interval the most failures occur. 
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Figure 2.7. Three dimensional Wöhler curve (or SN-curve)  for the tests in Figure 
2.2 

With the density function f(t) the Wöhler curve in Figure 2.2, also re-
ferred to as the SN-curve, can be illustrated as a three dimensional “moun-
tain range”, see Figure 2.7. A failure frequency is shown for each load and 
corresponding time. 

Figure 2.8 shows an example of a density function for a commercial ve-
hicle transmission. Here, 2115 damaging events are observed, divided into 
82 classes [ 2.28]. 
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Figure 2.8. Failure density f(t) of a 6 gear commercial vehicle transmission 

The distribution is symmetrical on the left side. This indicates that the 
failures are mainly early failures. Such failures could be traced back to 
material or assembly failures, which are common for complex systems.   

A further example of a density function is shown in Figure 2.9. Here, 
one sees the amount of deaths as a function of age at death.  First, one is 
able to see a span of child deaths, then a second area with very few deaths 
between 15 and 40 years of age, followed by an increasing number of 
deaths with increasing age. For men, the most deaths occur at an age of 80, 
whereas for women, the most deaths occur at a later age. 
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Figure 2.9. Density function f(t) of human deaths 
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2.1.1.2 Distribution Function or Failure Probability 

In many cases, the number of failures at a specific point in time or in a 
specific interval is not of interest but rather, how many components in total 
have failed up to a time or until a certain interval is reached. This question 
can be answered with a histogram of the cumulative frequency. The ob-
served failures, see Figure 2.10a, are added together with each progressive 
interval. The result is the histogram of the cumulative frequency shown in 
Figure 2.10b. 

The cumulative frequency H(m) for class m can be calculated as: 

∑
=

=
m

i
rel ihmH

1
)()( ,      i:  number of class. (2.9) 

The sum of failures can be represented as a function just as the density 
function in Section 2.1.1.1.  This function is called the “empirical distribu-
tion function F *(t)”, see Figure 2.10b. 
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Figure 2.10. Cumulative frequency and distribution function: a) histogram of 
frequencies; b) histogram of the cumulative frequency and empirical distribution 
function F *(t) 
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The actual distribution function F(t) is determined by increasing the 
number of experimental values. Thus, the class size decreases continuously 
and the contour of the histogram becomes a smooth curve for the limit 
n → ∞. The result is the distribution function F(t), see Figure 2.11. 

The distribution function always begins with F(t) = 0 and increases 
monotonically, since for each time or interval a positive value is added – 
the observed failure frequency. The function always ends with F(t) = 1 
after all components have failed. 
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Figure 2.11. Histogram of the cumulative frequency and distribution function F(t) 
(number of failures n → ∞) 

The limit of Equation (2.9) results in a distribution function as the inte-
gral of the density function: 

∫= dttftF )()( . (2.10) 

Thus, the density function is the derivative of the distribution function: 

dt
tdFtf )()( = . (2.11) 

In reliability theory the distribution function F(t) is called the “failure 
probability F(t)” (F for failure). This term is adequate, since the function 
F(t) describes the probability, with which failures occur at the time t. 
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Although the failure probability is visually less clear than the density 
function, it can be used to evaluate trials. Therefore, the failure probability 
is the function used most often in Chapter 6.   

Here again, the 6 gear commercial vehicle transmission serves as an ex-
ample of failure probability in reality, Figure 2.12. Due to the standardised 
lifetime it is again only possible to make a qualitative statement. It is 
shown that, for example, the B10 value corresponding to F(t) = 10 % equals 
0.2.  This means that 10% of the transmissions are defective when the life-
time 0,2 · T has been reached. 
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Figure 2.12. Failure probability F(t) of a 6 gear commercial vehicle transmission 

Figure 2.13 shows the concrete failure probability F(t) corresponding to 
the example of human death. With this function for F(t), for example, 20% 
of a generation has passed away by their 60th birthday.  
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Figure 2.13. Failure probability F(t) for human deaths 

2.1.1.3 Survival Probability or Reliability 

The failure probability in Section 2.1.1.2 described the sum of failures 
as a function of time. However, for many applications the sum of compo-
nent parts or machines that are still intact is of interest. 

This sum of functional units can be displayed with a histogram of the 
survival frequency, see Figure 2.14. This histogram results when the num-
ber of defect units is subtracted from the total number of components or 
machines. The empirical survival probability R *(t) is shown in Figure 
2.14, which results by connecting the beam midpoints with straight lines. 

The sum of failures and the sum of the intact units in each class i or at 
any point in time t always add up to 100%. The survival probability R(t) is 
thus the complement to the failure probability F(t). 

).(1)( tFtR −=  (2.12) 

With Equation (2.12) the histogram in Figure 2.14 can also be deter-
mined by reflecting the histogram in Figure 2.10 over the 50% axis. The 
survival probability R(t) always begins with R(t) = 100%, since no failures 
have occurred at t = 0. The function R(t) decreases monotonically and ends 
with R(t) = 0% after all units have failed. 
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Figure 2.14. Representation of the failure behaviour from Figure 2.10 with the 
histogram of the survival probability or the empirical survival probability R *(t)  
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Figure 2.15. Survival probability R(t) as a complement to the failure probabil-
ity F(t)  

Figure 2.15 shows a visual representation of the Equation (2.12) for the 
failure time tx with the help of the density function and the Equation (2.10). 

In reliability theory the survival probability is called “reliability R(t)”. 
The function R(t) corresponds to the term reliability as defined in [2.2,  2.3, 
 2.36,  2.38]: 
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RELIABILITY is the probability that a product does not fail during 
a defined period of time under given functional and surrounding 
conditions.  

Thus, reliability is the time dependent probability R(t) for non-failure. It 
should be noticed, that in order to make a statement about the reliability of 
a product, not only the considered time period is important but also the 
exact functional and surrounding conditions are especially required. 

For the commercial vehicle transmission, Figure 2.16, a standardised 
lifetime of 0.2 results in a survival probability of R(t) = 90%, which corre-
sponds to a failure probability of F(t) = 10%, see Equation (2.12). Thus, 
90% of the transmissions survive a lifetime of 0.2·T. 
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Figure 2.16. Survival probability R(t) of a 6 gear commercial vehicle transmission  

For the survival probability of men, see Figure 2.17, is R(t) = 80% for an 
age of death of 60. This in turn corresponds to a failure probability of 
F(t) = 20%, see Figure 2.13. 
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Figure 2.17. Survival probability R(t) for human beings 

 
2.1.1.4 Failure Rate 

To describe the failure behaviour with the failure rate λ(t), the failures at 
the point in time t or in a class i are not divided by the sum of total failures, 
as for the relative frequency in Section 2.1.1.1, but rather are divided by 
the sum of units still intact: 

)classin or   in timepoint  (at theintact  still units of sum
)classin or   in timepoint  (at the Failures

 it
 it)t( =λ (2.13) 

Figure 2.18 shows the histogram of the failure rates and the function of 
the empirical failure rate λ *(t) for the trial run in Figure 2.4. It can be seen, 
that the failure rate in the last class unavoidably approaches ∞, since there 
are no longer any intact units. Thus, the denominator in Equation (2.13) 
approaches zero. 
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Figure 2.18. Histogram of the failure rate and the empirical failure rate λ *(t) for 
the trial run in Figure 2.4 

The density function f(t) describes the number of failures and the sur-
vival probability R(t) describes the number of units still intact. Therefore, 
the failure rate λ(t) can be calculated as the quotient of these two functions: 

( ) ( )
( )tR
tft =λ . (2.14) 
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Figure 2.19. Determination of the failure rate out of the density function and sur-
vival probability  
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Figure 2.19 shows a graphical representation of Equation (2.14) for the 
failure time tx. 

The failure rate at time t can be interpreted as a measurement for the risk 
that a part will fail, with the prerequisite that the component has already 
survived up to this point in time t. The failure rate at a point in time speci-
fies how many of the still intact parts will fail in the next unit of time. 

The failure rate λ(t) is used very often not only to describe wearout fail-
ures as in Figure 2.18, and also early and random failures. The goal is to 
collect the complete failure behaviour of a part or a machine. The result is 
always a similar and typical characteristic of the curve, see Figure 2.20. 

This curve is called the “bathtub curve” based on its shape [ 2.29,  2.34]. 
The bathtub curve can be divided into three distinct sections: section 1 for 
early failures, section 2 for random failures, and section 3 for wearout fail-
ures. 
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Figure 2.20. The “bathtub curve” 
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Section 1 is characterized by a decreasing failure rate.  The risk that a 
part will fail decreases with increasing time. Such early failures are mainly 
caused by failures in the assembly, production, material or by a definite 
design flaw. 

The failure rate is constant in section 2. Thus, the failure risk remains 
the same. Most of the time, this risk is also relatively low. Such failures are 
provoked for example by operating or maintenance failures or by dirt par-
ticles.  Normally, such failures are difficult to pre-estimate.  

The failure rate increases rapidly in the section for wearout failures (sec-
tion 3). The risk that a part will fail increases rapidly with time. Wearout 
failures are caused by fatigue failures, aging, pittings, etc. 

Each of the three sections corresponds to different failure causes. Ac-
cordingly, different actions must be taken for an improvement in reliability 
in each respective section, see Figure 2.20. For section 1 many trials and 
pilot-run series are recommended. The production and quality of the parts 
should also be controlled. In section 2, correct operation and maintenance 
should be considered and the established use and application of the product 
must be ensured. Section 3 requires either very exact calculations for com-
ponents or corresponding practical trials.  

The actions taken in sections 1 and 2 must be ensured by appropriate 
steps taken early on in the design process. The improvements in section 3, 
however, take place in the stage of constructive dimensioning. Thus, the 
designer can have a strong influence on this section. In addition to repre-
senting the most decisive section for reliability, section 3 is the only sec-
tion which can be calculated. Thus, a prognosis of the expected system 
reliability is often limited to just this section. 

These three sections can also be clearly seen in the example of man’s 
life expectancy, see Figure 2.21. Section 1 with its decreasing failure rate 
is the section for child deaths. The older a child becomes, the less the risk 
it has to die of a children’s disease. Section 2 for coincidental deaths is not 
distinctively formed. Deaths here can be seen as random events such as 
accidents for example. Section 3 shows clearly the increasing age depend-
ent death rate with its drastically increasing failure rate. 
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Figure 2.21. Failure rate λ(t) for man’s life expectancy  
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Figure 2.22. Failure rate λ(t) of a 6 gear commercial vehicle transmission  

The example of the 6 gear commercial vehicle transmission, Figure 
2.22, shows that the bathtub curve is not typical for all technical systems.  
It is more common when only individual sections of the bathtub curve 
occur. 

The failure behaviour for complex systems is thus not characterized 
alone by the bathtub curve, but much more by differing failure distribu-
tions exemplifying various behaviours in certain individual sections. 
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The failure behaviour “A” in Figure 2.23 shows a typical bathtub curve 
with its three sections – early failure, random failures, and wearout fail-
ures. No early failures are recognizable in “B”; the failure probability re-
mains the same until wearout failures occur in section 3. The failure be-
haviour “C” is characterized by a continuously increasing failure 
probability; wearout failures cannot be distinguished. A system with a 
failure behaviour as in “D” has a low failure probability at the start of op-
eration, followed by a strong increase in failures up to a constant level. A 
mechanism according to “E” has a constant failure probability over the 
entire period of time (random failure). The failure behaviour in “F” is 
characterized by a high failure rate in the first section for early failures 
(burn in) and then decreases to a constant value for the rest of the lifetime. 
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Figure 2.23. Various failure behaviours with examples [2.32] 

The frequency at which these characterized failure behaviour curves oc-
cur is examined and summarized in [2.32], see Figure 2.24. 
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 Failure  
behaviour 1968 UAL 1973  

Broberg 
MSDP  
Studies 

1993 
SSMD 

 

A 4 % 3 % 3 % 6 % 

B 2 % 1 % 17 %  
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C 5 % 4 % 3 %  

D 7 % 11 % 6 %  

E 14 % 15 % 42 % 60 % 
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F 68 % 66 % 29 % 33 % 

Figure 2.24. Percent fractions according to various lifetime studies [2.32] 

Studies done by civil aviation (1968 UAL) show that only 4% of all fail-
ures have a trend as in example “A”, 2% have a trend as in example “B”, 
5% as in example “C”, 7% as in example “D”, 14% as in example “E” and 
68% as in example “F”. A constant failure behaviour trend as in example 
“E” should be strived for in the design phase. 

2.1.2 Statistical Values 

The failure behaviour can be described in detail by the functions dis-
cussed in Section 2.1.1.1 to 2.1.1.4. This requires, however, a time con-
suming determination and representation of the desired function. In many 
cases it is sufficient when the approximate “middle” of the failure function 
is known as well as in how much the failure times “deviate” from this 
mean. Here, “measures of central tendency and statistical spread” can be 
applied, which can easily be calculated from the failure times. The charac-
terization of the failure behaviour with such values results in a simplified 
description, where it is possible that information is lost. 

The most fundamental statistical values are the mean and the variance or 
standard deviation. These will be dealt with first. 

Mean 
The empirical mathematical mean, commonly just called mean, is calcu-

lated as follows for the failure times t1, t2, ... , tn: 
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The mean describes the location parameter where the middle of the fail-
ure times approximately lies. By viewing the represented failure times in 
Figure 2.4b as points of mass, the mean tm is the centre of mass of these 
points. For the example in Figure 2.4 the mean is tm = 31200 load cycles.  
The mathematical mean is sensitive to “outliers”, i.e. for extremely short 
or long failure times, the mean can be significantly affected.   

Variance 
The empirical variance s2 describes the average quadratic deviation from 

the mathematical mean and is thus a measurement for the statistical spread 
of the failure times about the mean tm: 

∑
=

−
−

=
n

i
mi tt

n
s

1

22 )(
1

1 . (2.16) 

For the calculation of the variance, the differences from the failure times 
to the mean are determined and the squares are summed. It is necessary to 
square the differences; otherwise, the positive and negative deviations 
would compensate each other. 

Standard Deviation 
The empirical standard deviation s is the square root of the variance;  

2ss = . (2.17) 

The advantage of the standard deviation in comparison to the variance 
is, that it has the same dimension as the failure times ti. Further important 
statistical values are the median and the mode.  

Median 
The median is the failure time which is located exactly in the middle of 

all failures. Therefore, the median can be most easily determined by the 
failure probability F(t): 

( ) 5,0=mediantF . (2.18) 

If the failure behaviour is represented with the density function f(t), then 
the median divides the area underneath the function f(t) into two equal 
sections according to Equation (2.10).  
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One great advantage of the median in comparison to the mean tm, is that 
it is insensitive to extreme values. A short or long failure time can not shift 
the median. 

Mode 
The mode describes the failure time that occurs the most. Therefore, the 

mode tmode can be calculated using the density function f(t): tmode corre-
sponds to the failure time of the density function maximum. 

0)(' =modaltf . (2.19) 

For example, in Figure 2.9 the mode is tmode ≈ 78 years for men. The 
mode plays a very important role in probability theory. If a trial is done, it 
is to be expected that most parts fail at the mode value. The measures of 
central tendency mean, median and mode are not equal to one another in 
the common asymmetrical distributions, see Figure 2.25. 
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Figure 2.25. Mean, median and mode for a left symmetrical distribution  

The three values are only identical when the density function possesses 
a perfectly symmetrical trend.  This is the case for the normal distribution 
to be explained in Section 2.2.1. 

2.1.3 Reliability Parameters  

Next to the statistical values described in Section 2.1.2, further values 
are used in the realm of reliability engineering to characterize reliability 
data.   

• MTTF (mean time to failure), 
• MTTFF (mean time to first failure) and  
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 MTBF (mean time between failure), 
• failure rate λ und failure quota q, 
• percent (%), per mill (‰), parts per million (ppm) and 
• Bq lifetime 

These variables are often used for further description of the failure or for 
reliability characteristics. 

MTTF 
There are various possibilities to specify the lifetime of a non-repairable 

system. The mean for the time without failures for an observed period of 
time is the expected value for the lifetime t, normally called (Mean Time 
To Failure). The MTTF can be calculated with integration as in Equation 
2.20, see Figure 2.26. 

( ) ( ) ( )∫ ∫
∞ ∞

==τ=
0 0

· dttRdttftEMTTF  (2.20) 

What happens to the components after failure is irrelevant for the 
MTTF. 

The mathematical mean can serve as a good estimate for the MTTF, 
whereby t1 to tn are independent realizations (observations) of failure free 
time periods for statistically identical observation units [ 2.2]. 

MTTFF and MTBF 
For the description of the lifetime of repairable components, the MTTFF 

can be used, which describes the mean lifetime of a repairable component 
until its first failure, see Figure 2.26.   

FailureFirst  To TimeMean  MTTFF = , (2.21) 

Thus, MTTFF corresponds to the MTTF for non-repairable components.   
Further definition of the lifetime after the first failure of a component 

can be described by the MTBF, which determines the mean lifetime of a 
component until its next failure and thus until repair maintenance. 

FailureBetween  TimeMean =MTBF  (2.22) 

Under the assumption that the element is as good as new after mainte-
nance, then the next mean time to failure (MTBF) is the same as the previ-
ous mean time to first failure MTTFF after the end of maintenance.   
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Figure 2.26. Explanation of MTTF, MTTFF and MTBF on behalf of an example 

 
Failure Rate λ and Failure Quota q 

The failure rate λ describes the risk that a part will fail, if it has already 
survived up to this point. The failure rate is determined by dividing the 
number of failures per time period by the sum of units still intact.  

The failure quota q can serve as an estimation of the failure rate λ. In 
contrast to the failure rate, the failure quota specifies the relative change in 
an observed time interval.  

size intervalquantity initial
interval  timeain  failures

⋅
=q  (2.23) 

If, for example, 5 units fail out of a test specimen size of 50 units within 
one hour, then the failure quota is 

h
11,0=q  (“10% per hour”) [ 2.8]. 

Percent, Per Mill and PPM 
In the realm of reliability engineering many circumstances are repre-

sented proportionally, such as the failure density, the failure probability or 
the reliability. The representation of these values is most commonly given 
in: 
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• percent:  quantity out of 1 hundred,  i.e. 1 out of 100 = 1 %, 
• per mill:  quantity out of 1 thousand, i.e. 1 out of 1,000 = 1 ‰  and 
• ppm:   quantity out of 1 million,  i.e. 1 out of 1.000.000 = 1 ppm 

Bx lifetime 
The Bx lifetime describes the point in time at which x % of all parts have 

already failed. This means that a B10 lifetime determines the point in time 
at which 10% of the parts have failed, see Figure 2.27. In practice, B1, B10 
and B50 lifetime values serve as a measurement for the reliability of a 
product. 
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Figure 2.27. Bx lifetime 

2.1.4 Definition of Probability 

As described in the previous sections, the failure times of components 
and systems can be seen as random variables. The terms and laws of 
mathematical probability theory can be applied to these random events.  
The term probability is of particular importance and will be described in 
various ways in the following. 

Classical Definition of Probability (Laplace 1812) 
The first contemplations concerning probability were made by gamblers 

interested in possible odds and where it is optimal to gamble at high 
stakes. To answer the question “how probable” it is that a certain event A 
occurs in a game of gambling, Laplace and Pascal determined the follow-
ing definition: 
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cases possible all ofnumber 
A  tofavorable cases ofnumber y Probabilit =)A(P . (2.24) 

Thus, for example, the probability of rolling a 6 with a die (event A) is: 

P(to roll a 6) = 
6
1 = 0,167,  

This means that after rolling a die several times, 16.7% of the rolls 
would result in 6. However, the definition in Equation (2.24) is not univer-
sally valid. This equation is only applicable when it is not possible for an 
infinite amount of events to occur and when every possible result is 
equally likely. In general, this is adequate for gambling. In technical real-
ity, however, the failure possibilities normally occur in varying amounts. 

Statistical Definition of Probability (von Mises 1931)  
For a random test specimen with the size n, where all elements are 

loaded equally in one trial, the failure of m elements is recorded. 
The relative failure frequency is (compare with Section 2.1.1.1): 

relative frequency 
n
mhrel = . (2.25) 

If it is possible to conduct trials independently of one another with dif-
fering random test specimens, then different relative frequencies will re-
sult. For an increasing random test specimen size n it has been observed, 
that hrel,n is scattered less and less from a constant value hx, see Figure 
2.28. 
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Figure 2.28. Dependency of the relative frequency to random test specimen size  

Therefore, it is a good proximate to define the limit of the relative fre-
quencies as the probability for the failure A: 
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( )AP
n
m

n
=

∞→
lim . (2.26) 

The exact theoretical observations can be seen in the weak and strong 
law of large numbers as well as in the Bernoulli law of large numbers 
[2.18,  2.25,  2.27].   

Unfortunately, the definition of probability according to Equation (2.26) 
is likewise not universal because it deals with an estimation and not with a 
definition. Trying to develop an all inclusive probability theory on the 
basis of Equation (2.26) resulted in degrees of acceptance and mathemati-
cal difficulties which could not be solved.   

However, for basic reliability observations and for the scope of this 
book, the definition out of Equation (2.26) is sufficient. This equation will 
be used in the following because of its clarity.   

Axiomatic Definition of Probability (Kolmogoroff 1933)  
In axiomatic definition “probability” is not defined in a strict sense. In 

modern theory, “probability” is seen much more as a basic principle that 
fulfils certain axioms. 

The axioms of probability proposed by Kolmogoroff are as follows: 

1. Each random event A is assigned to a real number P(A) for 
1)(0 ≤≤ AP , which is called the probability for A. (This axiom is simi-

lar to the characteristics of the relative frequency, see previous section)  
2. The probability for a certain event is:  
    P(E) = 1 (Standardization Axiom)  
3. If A1, A2, A3,... are random events, which are incompatible with one an-

other, i.e. 0=∩ ji AA for ji ≠ , then:   
...)()()(...)( 321321 +++=∪∪∪ APAPAPAAAP  

(Addition Axiom).  

These axioms are based upon an event space for elementary events, 
which is also known as the Boolean quantum field or the Boolean σ-field.   

The entire probability theory can be derived from the axioms 1 to 3.   

2.2 Lifetime Distributions for Reliability Description 

Section 2.1 showed how failure behaviour can be represented graphi-
cally with various functions. What is of interest in this section is, which 
curve these functions exactly have for a specific case and how to describe 
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them mathematically. The necessary “lifetime distributions” will be dealt 
with in this section. The normal distribution is the most widely accepted. 
However, it is seldom used in reliability engineering. The exponential dis-
tribution is often used in electrical engineering, while the Weibull distribu-
tion is the most common lifetime distribution used in mechanical engineer-
ing. The Weibull distribution will be dealt with in detail in this book. The 
log normal distribution is occasionally used in materials science and in 
mechanical engineering.   

2.2.1 Normal Distribution 

The normal distribution features the familiar bell-curve as its density 
function f(t), which is perfectly symmetric about the mean µ = tm, see 
Figure 2.29. Due to the symmetry of the density function the mean tm, me-
dian tmedian and mode tmode are congruent.   

The normal distribution includes both parameters tm (location parameter) 
and σ (scale parameter), see Table 2.1. The standard deviation σ is a meas-
urement for the statistical spread of the failure times and for the form of 
the failure functions. A low standard deviation results in a narrow, high 
bell-curve and a high standard deviation corresponds to a shallow curve for 
the density function, see Figure 2.29. 

The principle slope of the curve of the failure functions can not be al-
tered by the standard deviation. Most of the failures must occur around the 
mean and from there decrease perfectly symmetrical. Thus, it is only pos-
sible to describe one type of failure behaviour. This is the main disadvan-
tage of the normal distribution. 

In general, the normal distribution begins at t = -∞. Since failure times 
can only have positive values, the normal distribution can only be used if 
the definition of failures for negative times is negligible, see Table 2.1. 

The integral in Equations (2.28), (2.29) and (2.31) can not be elemen-
tary solved for the normal distribution. Thus, tables are used for the deter-
mination of the failure probability F(t) and survival probability R(t).  
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Figure 2.29. Failure function curves of the normal (Gaussian) distribution  



www.manaraa.com

38      2 Fundamentals of Statistics and Probability Theory 

Table 2.1. Equations for the normal (Gaussian) distribution  

Density Function ( )
( )

2

2

2

2
1 σ

µ−
−

⋅
π⋅σ

=
t

etf  (2.27) 

Failure Probability ( )
( )

τ⋅
π⋅σ

= ∫ σ

µ−τ
−

detF
t

0

2 2

2

2
1  (2.28) 

Survival Probability ( )
( )

τ⋅
π⋅σ

= ∫
∞

σ

µ−τ
−

detR
t

2

2

2

2
1  (2.29) 

Failure Rate ( ) ( )
( )tR
tft =λ  (2.30) 

Parameters: 

t: Statistical variables (load time, load cycle, number of operations, ...) > 0 

µ: Location parameter µ = tm = tmedian = tmode 

σ: scale measurement > 0 

2.2.2 Exponential Distribution 

The density function of the exponential distribution decreases mono-
tonically from its starting point as an inverse exponential function, see 
Figure 2.30. Here, failure behaviour is described starting with a high fail-
ure frequency and from there, decreases continuously.   

The equations for the exponential distribution in Table 2.2 show the 
simple mathematical structure of this distribution. The exponential distri-
bution has only one parameter: the failure rate λ. This failure rate λ is the 
inverse of the mean tm: 

mt
1

=λ . (2.31) 

Out of Equations (2.33) and (2.34) the mean of the reliability is 
R(tm) = 36,8% and for the failure probability, F(tm) = 63,2%. 
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Figure 2.30. Failure functions of the exponential distribution 
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The constant factor λ for the failure rate is a significant characteristic of 
the exponential distribution. It should be observed that λ has the same 
value and is independent of time. The exponential distribution is used for 
random failures, one salient feature is that the same proportion of parts fail 
relative to the number of parts remaining. 

Similar to the normal distribution, the exponential distribution is only 
suitable for the description of one certain type of failure behaviour. Such a 
failure behaviour begins with a high failure frequency and then becomes 
continuously less, which actually can only be found in mechanical engi-
neering.   
Table 2.2. Equations for the exponential distribution  

Density Function ( ) tetf λ−⋅λ=  (2.32) 

Failure Probability ( ) tetF λ−−= 1  (2.33) 

Reliability ( ) tetR λ−=  (2.34) 

Failure Rate ( ) .t const=λ  (2.35) 

Parameters: 

t: Statistical variables (load time, load cycle, number of operations, ...) > 0 

λ: Location and shape parameter 
mt
1

=λ  > 0 

2.2.3 Weibull Distribution  

2.2.3.1 Fundamental Terms and Equations 

With the Weibull distribution many different failure behaviours can be 
described. The density functions for the Weibull distribution illustrate this, 
see Figure 2.31a. The density function varies in dependency upon one 
parameter for the distribution – the shape parameter b. For low b values (b 
< 1), the failure behaviour can be described similar as in the exponential 
distribution, i.e. the behaviour begins with a very high failure frequency 
and from there decreases continuously. An exact exponential distribution 
results for b = 1. For b > 1, the density function always begins at f(t) = 0, 
reaches a maximum with increasing lifetime and decreases slowly again.  
The maximum of the density function shifts to the right for increasing b 
values. The normal distribution can be approximately reproduced for a 
shape parameter of b = 3.5. 
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The Weibull distribution can be divided into a two parametric and a 
three parametric distribution, see Table 2.3. 

The two parametric Weibull distribution exhibits the characteristic life-
time T (scale parameter) and the shape parameter b. The characteristic 
lifetime is an estimate of the mean and shows the location of the distribu-
tion. The shape parameter b is a measurement for the statistical spread of 
the failure times and, as mentioned earlier, for the shape of the failure den-
sity, see Figure 2.31a. A two parametric Weibull distribution always de-
scribes failures starting from time t = 0. 

Next to the parameters T and b the three parametric Weibull distribution 
exhibits an additional parameter for a failure free time t0 location parame-
ter. With this third parameter, failures can be described that only begin to 
occur after a certain time t0. The three parametric Weibull distribution can 
be derived from the two parametric distribution with a time transformation, 
where the failure time t and the characteristic lifetime T are substituted 
with t - t0  and T - t0 (t → t - t0, T → T - t0).  The detailed equations are 
given in Table 2.3. 

The reliability R(t) of the Weibull distribution corresponds to an inverse 
exponential function. For the two parametric Weibull distribution, the ex-
ponent for this exponential function is defined as the quotient (t 

 / T), which 
again can be varied by the exponent b. The equations of the remaining 
failure functions are listed in Table 2.3. 

In this context it should be noted that for the three parametric Weibull 
distribution variables, different versions are known internationally. For 
these equations the commonly accepted scale parameter θ or η in the de-
nominator is represented by the term (T - t0).  In this book the German or 
European version of the three parametric Weibull distribution with (T - t0) 
is used.  The advantage of this approach is that along with the knowledge 
of failure free time t0, a direct visualization is achieved of the scale pa-
rameter T. The scale parameter T represents the characteristic lifetime 
starting from the origin, unlike θ or η which originates from the time t0, see 
Figure 2.31. 
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Table 2.3. Equations and variables of the Weibull distribution  

Two parametric Weibull Distribution:  

Survival Probability or 
Reliability ( )

b

T
t

etR
⎟
⎠
⎞

⎜
⎝
⎛−

=  (2.36) 

Failure Probability ( )
b

T
t

etF
⎟
⎠
⎞

⎜
⎝
⎛−

−= 1  (2.37) 

Density Function ( ) ( )
b

T
tb

e
T
t

T
b

dt
tdFtf

⎟
⎠
⎞

⎜
⎝
⎛−−

⎟
⎠
⎞

⎜
⎝
⎛⋅==

1

 (2.38) 

Failure Rate ( ) ( )
( )

1−

⎟
⎠
⎞

⎜
⎝
⎛⋅==λ

b

T
t

T
b

tR
tft  (2.39) 

Three parametric Weibull Distribution:  

Survival Probability or 
Reliability ( )

b

tT
tt

etR
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
−

−

= 0

0

 
(2.40) 

Failure Probability ( )
b

tT
tt

etF
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
−

−

−= 0

0

1  
(2.41) 

Density Function ( ) ( )
b

tT
ttb

e
tT
tt

tT
b

dt
tdFtf
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Failure Rate ( ) ( )
( )

1

0

0

0

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

⋅
−

==λ
b

tT
tt

tT
b

tR
tft  (2.43) 

Parameters: 

t: Statistical variable (load time, load cycles, …) > 0  

T: Characteristic lifetime, “scale parameter”.  For t = T, F(t) = 63,2% or 
R(t) = 36,8%. T > t0 

b: Shape parameter or failure slope.  Determines the shape of the curve. > 0 

t0: Failure free time – location parameter.  The parameter t0 determines the 
point in time from which failures begin to occur.  It corresponds to a 
shifting of the failure behaviour along the time axis.  If t0 > 0 then t > t0. 
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Figure 2.31a. Density function f(t) of the Weibull distribution for various shape 
parameters b (characteristic lifetime T = 1, failure free time t0 = 0) 
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Figure 2.31c. Survival probability R(t) of the Weibull distribution for various 
shape parameters b (characteristic lifetime T = 1, failure free time t0 = 0) 
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The various failure rates for the Weibull distribution as in Figure 2.31d 
can be divided into three sections, which are identical to the three sections 
of the bathtub curve in Section 2.1.1.4: 

b < 1: Failure rates decrease with increasing lifetime: description of 
early failures; 

b = 1: Failure rate is constant.  The shape parameter b = 1 is suitable 
for the description of random failures in the constant failures of 
the bathtub curve;  

b > 1: Failure rates increase drastically with increasing lifetime.  
Wearout failures can be described with b values greater than 1.  

The equations for the Weibull distribution include the statistical variable 
t in relative form t/T or (t - t0) / (T - t0). Thus, for the time t = T this quo-
tient is equal to 1 and the failure probability can be calculated as follows: 

( ) 63201 1 .eTF =−= − . (2.44) 

Therefore, the characteristic lifetime T is assigned a failure probability 
of F(t) = 63,2% which corresponds to the survival probability of 
R(t) = 36,8%. Similar to the median, for which F(t) = 50%, the characteris-
tic lifetime T can be interpreted as a special mean, Figure 2.32.  
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Figure 2.32. Characteristic lifetime T as “mean” 

The mean tm of the Weibull distribution can only be calculated with the 
help of the gamma function: 

⎟
⎠
⎞

⎜
⎝
⎛ +Γ⋅=

b
Ttm

11  (2.45) 
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or ( ) 00
11 t
b

tTtm +⎟
⎠
⎞

⎜
⎝
⎛ +Γ⋅−= . (2.46) 

The function values for the gamma function are listed for example in 
[2.4]. 

2.2.3.2 Weibull Probability Paper 

The failure probabilities F(t) in Figure 2.31b possess an s-shaped curve.  
With a special “probability paper” it is possible to plot the functions F(t) of 
the two parametric Weibull distribution as a straight line, see Figure 2.33.  
Thus, the failure behaviour can be portrayed in a simple graphical way.  
This can prove to be useful in the evaluation of trials, since it can be found 
best to fit line for the entered trial data, see Chapter 6.   
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Figure 2.33. Weibull probability paper with various failure probabilities F(t) 

Here again, the example of the commercial vehicle transmission already 
introduced in Section 2.1.1.2 can be used to exemplify the use of Weibull 
probability paper. It is easy to recognize that the once s-shaped curve in 
Figure 2.12 is now displayed as a straight line.   
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Figure 2.34. Failure probability of a 6 gear commercial vehicle transmission rep-
resented in Weibull probability paper  

The transformation of the curves into straight lines is achieved with a 
unique scaling of the abscissa and ordinate. The abscissa is logarithmic, 
while the ordinate has a double logarithmic scale: 

tx ln= , (2.47) 

( )( )( )tFy −−= 1lnln  or ( )( )( )tRy lnln −= . (2.48) 

The special axis scaling based on a two parametric Weibull distribution 
results from the following equation: 

( )
b

T
t

etF
⎟
⎠
⎞

⎜
⎝
⎛−

−= 1 , 
(2.49) 

( )
b

T
t

etF
⎟
⎠
⎞

⎜
⎝
⎛−

=−1 , 
(2.50) 

( )

b

T
t

e
tF

⎟
⎠
⎞

⎜
⎝
⎛+

=
−1

1 . (2.51) 

Taking the logarithm twice results to:  

( ) ⎟
⎠
⎞

⎜
⎝
⎛⋅=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
− T

tb
tF

ln
1

1lnln , (2.52) 
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( )( )( ) TbtbtF lnln1lnln ⋅−⋅=−− . (2.53) 

The Equation (2.53) corresponds to a linear equation in the form  
cxay +⋅=  (2.54) 

with the variables 

ba =  (slope), (2.55) 

Tbc ln⋅−=  (axis intersection), (2.56) 

tx ln=  (abscissa scaling), (2.57) 

( )( )( )tFy −−= 1lnln  (ordinate scaling). (2.58) 

Thus, every two parametric Weibull distribution can be represented as a 
straight line in the Weibull probability chart, see Figure 2.33. The slope of 
the straight lines in the Weibull probability chart is a direct measurement 
for the shape parameter b. The shape parameter b can be read off the right 
ordinate in Figure 2.35 by shifting the straight lines parallel through the 
pole P. 

The location of this pole and the scaling of the linear ordinate for the 
shape parameter b can be determined with Equations (2.55), (2.57) and 
(2.58): 

( )( )( ) ( )( )( )
12

1122
lnln

1lnln1lnln
tt

tFtF
x
yb

−
−−−−−

=
∆
∆

= . (2.59) 
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Figure 2.35. Weibull probability paper  

Example: 
A two parametric Weibull distribution with the shape parameter b = 1.7 

and the characteristic lifetime T = 80,000 load cycles is to be drawn in 
Weibull probability paper.  The desired function out of the given data is: 

( )
71

LW000801

.

,
t

etF
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−= .  
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First, an assisting straight line is sketched with slope b = 1.7 in the prob-
ability paper, see Figure 2.36.  This straight line begins at the pole P and 
ends on the right ordinate at b = 1.7. Thus, the slope of the desired Weibull 
straight line is already established. The assisting straight line must then be 
shifted parallel until it intersects F(t) = 63% for a characteristic lifetime of 
T = 80,000 load cycles. In conclusion, the Weibull straight line in Figure 
2.36 corresponds with the desired failure probability F(t). 
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Figure 2.36. Weibull probability paper with the Weibull straight line from the 
above example  

A three parametric Weibull distribution in Weibull probability paper is 
not a straight line but rather a convex curve, see Figure 2.37. Nevertheless, 
a three parametric Weibull distribution can also be portrayed as a straight 
line, if the abscissa scaling for t0 is corrected with the failure times (t - t0).  
With this transformation a three parametric Weibull distribution can be 
traced back to a two parametric Weibull distribution, see Figure 2.38. 
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Figure 2.37. Original values of a three parametric Weibull distribution in Weibull 
probability paper  
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Figure 2.38. Three parametric Weibull distribution with the corrected failure 
times from t0 to (t - t0) 
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Figure 2.39. Bathtub curve realized in Weibull probability paper  

As already mentioned in Section 2.1.1.4, the entire failure behaviour of 
components or systems with the failure rate λ(t) can be represented in the 
shape of the bathtub curve. The three sections of the bathtub curve, which 
describe different failure causes, can also be realized in Weibull probabil-
ity paper, see Figure 2.39. Each section is then described with its own 
Weibull distribution and corresponding shape parameter b in the Weibull 
probability paper. 

2.2.3.3 History of the Weibull Distribution 

From 1930 to 1950 W. Weibull conducted various fatigue trials, where 
he realized that he could not describe the resulting failure behaviour with 
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the common distributions known up to his time. Therefore, he himself 
attempted to develop a universal distribution, which he published in detail 
in 1951 [2.40]. 

W. Weibull assumed that every distribution function can be described in 
the form: 

( ) ( )tetF ϕ−−=1  (2.60) 

He also set the following minimal conditions for the function φ(t): 

• φ(t) is positive and increases monotonically (thus, the principle re-
quirement for a continuous, monotone increasing distribution function is 
fulfilled),  

• t0 exists a lower limit for which φ(t) = 0, so that a minimum lifetime or 
failure free time can be considered.   

The simplest function that fulfils these conditions is: 

( )
b

T
ttt ⎟

⎠
⎞

⎜
⎝
⎛ −

=ϕ ~ 0 . (2.61) 

 Before the time t0, the argument in Equation (2.61) is negative. Thus, 
the function is undefined before the time t0. Starting from t0, φ(t) increases 
monotonically.  

If a value (T - t0) is substituted for the reference value T~ , then 
F(t) = 63,2% for all t = T. Thus, all conditions are fulfilled, and it becomes 
simpler to handle the function in calculations. 

The Weibull distribution in three parametric form results by inserting 
Equation (2.61) in Equation (2.60): 

( )
b

tT
tt

etF
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−

−= 0

0

1 . 
(2.62) 

It could not be explained by any probability theory, why W. Weibull’s 
postulate for exactly this function is suitable for the description of lifetime 
trials. W. Weibull derived the function purely empirically.   

2.2.3.4 Probability Theory Justification for the Weibull 

 

The Weibull distribution is characterized as an “asymptotical extre-
mum distribution” in probability theory. Such a distribution had already 
been fundamentally researched early on by Fischer and Tippett [2.10] as 
well as by Gnedenko [2.14]. After W. Weibull empirically developed and 

Distribution
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The Weibull distribution corresponds to an asymptotical extremum 
distribution of the lowest (first) order statistic for a test specimen 
with the size n, for large values for n (n → ∞). 

In order to understand this definition it is first necessary to understand 
the terms order statistic and order statistic distribution. If these terms are 
not familiar to the reader, then Section 6.2 should be dealt with first, where 
order statistics and their distributions are described in more detail. 

Imagine a component separated into n parts: 
 

n parts

component

 
 

By designating the lifetimes for the n parts as t1, t2, … tn, the lifetime of 
the complete component is tcomponent = min (t1, t2, … tn).  The component 
fails with the failure of the weakest link. Thus, the failure time tcomponent 
corresponds to the shortest failure time in the “random test specimen” of 
size n.  The shortest failure time is designated as the first order statistic in 
the random test specimen. For another, similar component with an identi-
cal “random test specimen size” n, the tcomponent or the lowest order statistic 
will be somewhat different. Consequently, a distribution can be assigned to 
this order statistic. Since the first order statistic (or also the nth order statis-
tic) represents an extreme order, it is designated as an extremum and its 
distribution as an extremum distribution.  For the limit n → ∞, the lifetime 
of a component is then Weibull distributed [2.13,  2.18].   

The failure of a component through its weakest part corresponds to the 
principle of a chain’s weakest link. Only for the case that a real failure 
cause is based on this principle, it is theoretically possible for the Weibull 
distribution to describe the occurrence of failures exactly. However, due to 
the distribution’s universality, see Figure 2.31, the Weibull distribution is 
used in practice mainly due to purely pragmatic reasons.   

introduced the distribution, it was examined further under probability the-
ory aspects by Freudenthal and Gumbel [2.11,  2.16,  2.17] and most re-
cently by Galambos [2.13]. All of these sources include for the most part 
the following definition:  
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2.2.4 Logarithmic Normal Distribution 

The logarithmic normal distribution, commonly called log normal dis-
tribution for short, is based on the normal distribution from Section 2.2.1.  
The random variable t is substituted with the logarithmized form log t in 
Equations (2.27) to (2.30). This results that the logarithmized failure times 
follow the pattern of a normal distribution. The equations for the log nor-
mal distribution are summarized in Table 2.4. 

Here, it must be noted that the equations of the log normal distribution 
can have either the logarithm to the base of 10 (lg) or the normal log (ln) in 
the numerator of the exponent. 
Table 2.4. Equations for the log normal distribution 

Density Function ( )
( )

2

2

2
lg

2
1 σ

µ−
−

⋅
π⋅σ⋅

=
t

e
t

tf  (2.63) 

Failure Probability ( )
( )

τ⋅
π⋅σ⋅τ

= ∫ σ

µ−τ
−

detF
t

0

2

lg
2

2

2
1  (2.64) 

Survival Probability ( ) ( )tFtR −=1  (2.65) 

Failure Rate ( ) ( )
( )tR
tft =λ  (2.66) 

Parameters: 

t: Statistical variable (load time, load cycle, number of operations, …) > 0 

µ: scale parameter. The exact mean of the log normal distribution is 
µ=10, LVmediant . 

σ: “shape parameter”, statistical spread   > 0 

Contrary to the normal distribution, it is possible to produce strongly 
varying density functions with the log normal distribution. Therefore, simi-
lar to the Weibull distribution, it is possible to describe many different 
failure behaviours with the log normal distribution.  

 

The application of the log normal distribution is simplified by the fact 
that the procedure of the normal distribution, the most thoroughly re-
searched and developed distribution, can be easily carried over for the log 
normal distribution. Similar to the normal distribution, the disadvantage of 
the log normal distribution is that the density function can only be represented 
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The log normal distribution’s failure rate increases with increasing life-
time and then decreases after reaching a maximum. The failure rate ap-
proaches zero for very low lifetimes. Thus, the monotonically increasing 
failure rate for wearout failures can only be represented by the log normal 
distribution with restrictions. On the other hand, the log normal distribu-
tion describes failure behaviours well that begin with a rapidly increasing 
failure rate followed by many robust and resistant components which can 
endure a long load period. 

While many random factors work together in generating a normal distri-
bution, these random factors are multiplicatively combined for the log 
normal distribution. Thus, the individual random factors are proportionally 
related to one another. This may be shown in wearout failures. Here it is 
required that the fracture caused by the load gradually occurs and spreads, 
and that a very large number of crack extensions form before final fracture. 
The crack growth in each gradual level can be regarded as a random vari-
able, which is proportional to the average crack length that can be reached. 
With the central limit theorem [2.18,  2.25,  2.27] the log normal distribu-
tion can be used as a model for the description of wearout failures [2.24].  

There is also probability paper for the log normal distribution in which 
the failure probability F(t) can be shown as a straight line and is therefore 
suitable for the evaluation of trials, see Figure 2.40. 

The probability network has an abscissa with a log base ten scaling and 
an ordinate scaled according to the normal distribution [2.18]. The median 
tmedian = 10µ corresponds to the intersection with the 50% failure probability 
line. 

The standard deviation σ is: 

%50

%84lg
t
t

=σ     or
%16

%50lg
t
t

=σ . (2.67) 

Figure 2.40 shows a few examples of failure probabilities.  
 

with limitations, and that the other failure functions can only be deter-
mined with either laborious integration or with tables and charts. 
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Figure 2.40. Log normal probability paper with different failure probabilities F(t) 

Similar to the Weibull distribution, the log normal distribution also has a 
three parametric version with a failure free time t0 as a third parameter 
[2.18]. However, this three parametric log normal distribution is applied in 
only very few cases.   

2.2.5 Further Distributions 

The distributions introduced in the following sections are seldom ap-
plied in practice. However, they offer certain advantages for individual 
cases and thus are mentioned here for the sake of completeness. 

2.2.5.1 Gamma Distribution 

Just as the Weibull distribution, the gamma distribution exists in a two 
and three parametric form. A generalized gamma distribution can even 
contain four parameters. However, the statistical analysis of data with such 
a flexible model can lead to such a high complexity, that this form with 
four parameters is not accounted here [2.19].   

The gamma distribution’s density for a two parametric form is 
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( ) ( )b
etatf

atbb

Γ
=

−−1
 (2.68) 

and for a three parametric form 

( ) ( ) ( ) ( )01
0

ttab
b

ett
b

atf −−−−
Γ

= , (2.69) 

whereby a is a scale parameter (a ≠ 0), b a shape parameter (b > 0) and t0 a 
location parameter.  Furthermore, the complete function is, see Table A.5,  

( ) ∫
+∞

−−=Γ
0

1 dxexb xb  (2.70) 

and the incomplete gamma function is 

( ) ∫ −−=Γ
at

xb dxexatb
0

1,  (2.71) 

which, for example, is tabulated in Bronstein [ 2.4].  
The probability distribution of a random variable with a two parametric 

gamma distribution can only be described as an integral 

( ) ( ) ∫
−−

Γ
=

t
aub

b

dueu
b

atF
0

1 , (2.72) 

out of which the survival probability can be derived: 

( ) ( ) ∫
−−

Γ
−=

t
aub

b

dueu
b

atR
0

11 . (2.73) 

The failure rate of the gamma distribution cannot be determined in com-
plete form; however, it can be described by the following general equation: 

( ) ( )
( )tF

tft
−

=λ
1

. (2.74) 

The expected value and the variance of a two parametric gamma distri-
bution are as follows: 

( )
a
btE =  (2.75) 
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and 

( ) 2a
btVar = . (2.76) 

As already mentioned, the three parametric gamma distribution also has 
an additional location parameter t0 besides the parameters a and b. As in 
the exponential and Weibull distribution, failures can be described with 
this parameter that first occur after a time t0, i.e. failures that possess a 
failure free time. 

The expected value for a three parametric gamma distribution is 

( )
a
bttE += 0  (2.77) 

and the variance can be calculated with Equation (2.76), which means that 
the variance has the same value in both the two parametric and three para-
metric form and is thus independent from t0. 

The gamma distribution can describe various failure behaviours, just as 
the Weibull distribution. This may be observed especially on the density 
function of the gamma distribution, see Figure 2.41. The density function 
changes considerably in dependency upon one parameter – the shape pa-
rameter b. The gamma distribution corresponds exactly to the exponential 
distribution for b = 1, see Figure 2.30. 
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Figure 2.41. Failure functions of a two parametric gamma distribution with a = 1 
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If the shape parameter b has a positive whole number (b = 1, 2, …), then 
the gamma distribution turns into the Erlang distribution, described in 
2.2.5.2 below.   

The density function always begins at f(t) = 0 for b > 1, reaches a maxi-
mum with increasing lifetime and from there decreases continuously. The 
maximum of the density function shifts to the right with an increasing 
shape parameter, see Figure 2.41.  

Figure 2.41 showed the failure probability and the survival probability 
for the gamma distribution. As seen in Figure 2.41, the failure rate for the 
gamma distribution is suitable for the description of failure behaviours 
with increasing, decreasing, and constant failure rates, as in the Weibull 
distribution. The failure rate converges to the scale parameter a with in-
creasing t. The gamma function distinguishes itself from the Weibull dis-
tribution by the fact that the failure rate has an exponential factor of (b - 1) 
and thus changes more rapidly for increasing t [2.19]. 

2.2.5.2 Erlang Distribution 

The Erlang distribution is a special case of the gamma distribution. It 
can be derived directly from the gamma distribution for shape parameters 
b with positive whole values. Thus, all described characteristics for the 
gamma distribution are applicable to the Erlang distribution. In particular, 
the advantage of this distribution is its simplicity and relationship to the 
exponential distribution for the parameter b = 1. 

The relationship to the exponential distribution is the actual importance 
of the Erlang distribution. The Erlang distribution corresponds to the sum 
of n statistically independent random values t1, …, tb, which possess the 
exact same exponential distribution. This can prove to be very practical for 
example when describing failures which occur in phases and the last fail-
ure occurs at the end of the phase b. 

The density function for the Erlang distribution is: 

( ) ( )
( ) !1

1

−
=

−−

b
eatatf

atb
 (2.78) 

The failure probability is calculated by integrating the density function: 

( ) ( )∑
−

=

−
−=

1

0 !
1

b

r

rat

r
atetF . (2.79) 

The equation for the survival probability is: 
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( ) ( )∑
−

=

−
=

1

0 !

b

r
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and for the failure rate: 
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b

r
atb

atat . 
(2.81) 

The equations according to [2.12] for the expected value and variance of 
the Erlang distribution are as follows: 

( )
a
btE = , (2.82) 

( ) 2a
btVar = . (2.83) 

Figure 2.42 shows the graphical representation of the functions of the 
Equations (2.78) to (2.81). Here, it is shown that various density functions 
can be realized (left symmetrical, symmetrical, decreasing). As already 
mentioned, the characteristics are identical to those of the gamma distribu-
tion. 

The failure rate for the Erlang distribution increases monotone, and it is 
imperative that (0) 0λ = , as well as: 

( ) atlim
t

=
∞→

λ . (2.84) 

This means that the failure rates for the Erlang and the gamma distribu-
tion converge for, ∞→t , towards a limiting value. In contrast, the 
Weibull distribution approaches infinity for b values greater than one. 
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Figure 2.42. Failure functions of the Erlang distribution  
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2.2.5.3 Hjorth Distribution  

The Hjorth distribution stems from research done by U. Hjorth [2.21] 
concerning the relationship between failure estimation and probability 
modelling. 

Similar to the gamma and Weibull distributions, the Hjorth distribution 
can describe various types of failure behaviour well. Then entire bathtub 
curve can be described with this distribution, which means that increasing, 
decreasing, constant and bathtub shaped failure behaviours can be repre-
sented. The Hjorth distribution has three parameters: the scale parameter β, 
and two shape parameters θ and δ. Thus, in some situations the failure 
behaviour can be better described than by the Weibull distribution, for 
example, if the failure behaviour changes or the entire bathtub curve 
should be described with only one distribution [2.21]. 

The density function for the Hjorth distribution is: 

( ) ( )
( )

2
1

2

1

1
t

e
t

tttf
δ

−

+
β
θ

β+

θ+δβ+
= . (2.85) 

In this equation, δ ≠ 0 and β ≠ 0. The respective failure probability can 
be calculated with integration: 

( )
( )β

θ

δ
−

β+
−=

t

etF
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1
1

2

2

.

 (2.86) 

The survival probability is written as: 

( )
( )β

θ

δ
−

β+
=

t

etR

t

1

2

2

.

 (2.87) 

The resulting failure rate is: 

( )
t

tt
β+

θ
+δ=λ

1
. (2.88) 

The expected value and variance of the Hjorth distribution can only be 
calculated numerically. For this, the following integral must be defined: 
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With Equation (2.89) the expected value can be calculated: 
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and the variance: 
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The graphic curves of the Hjorth distribution are shown in Figure 2.43.   
A further advantage of the Hjorth distribution over the Weibull distribu-

tion can be seen by comparing the failure rate of the Hjorth distribution 
with that of the Weibull distribution. The Weibull failure rate reaches in-
finity for b < 1 and low t values, while the Hjorth failure rate reaches a 
shape parameter θ for these conditions, see Figure 2.43. 

The Equation (2.88) can also be interpreted as the sum of an increasing 

and a decreasing term, where δt is the increasing part and 
tβ+

θ
1

, the de-

creasing part. This is advantageous because it is then possible to character-
ize, for example, two different failure modes. 
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Figure 2.43. Failure functions for the Hjorth distribution 
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2.2.5.4 Sine Distribution 

The sine distribution is derived from the arcsin P  transformation. P is 
the probability of fracture. The arcsin P  transformation is a simple pro-
cedure for graphical and calculative evaluation of dynamic fatigue trials.  
This method, which can be traced back to R. A. Fisher, has proven itself 
over extensive testing to be a simple, robust and reliable evaluation 
method for dynamic fatigue trials, especially in cases where the economi-
cal aspects of a trial must be kept comparably low [2.6].  

The main advantage of this method is that the variance of the transfor-
mation variable arcsin=z P  reaches a constant asymptote for increasing 
z or for increasing test specimen size n, and is thus independent from n.  

As already mentioned, this distribution is mainly used for the estimation 
of endurance strength in transition periods as well as for the estimation of 
the minimal lifetime in the fatigue strength zone. The coordinate (σ, z) is 
made up of a straight line according to the operation laws for regression 
calculation, in which the transformation variable arcsin=z P  for the 
observed failures pro test specimen size can be read from tables. 

The coefficients in the equation σ̂ = +a bz  of the best fit straight lines 
are determined by using regression calculation. 

Networks for arcsin P  are available for graphical evaluation, which 
are examined in more detail in [ 2.6,  2.7,  2.9]. 

According to [2.26], the statistical probability distribution for this trans-
formation is: 

( ) PbaPF arcsin+= , (2.92) 

where P stands for the probability of fracture. 
The following failure probability is found by solving the above equation 

for P: 

( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ −

=−=
b

atsintRtF 21 . (2.93) 

The density function is found by deriving the equation by time. 
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tf
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The resulting failure rate is as follows: 
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In the sine distribution, the density function, the failure probability, as 
well as the survival probability are only defined for certain periods of time.  
Otherwise, the next sine period would begin. Furthermore, density func-
tions can only be symmetrical, thus making this distribution impractical for 
general mechanical engineering applications. 

2.2.5.5 Logit Distribution 

The logit function from research methodology of biology from J. Berk-
son is described by the following failure probability according to [2.9]: 

( ) ( ) ( )te
tRtF β+α−+

=−=
1

11  (2.96) 

The corresponding density function is: 
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and the failure rate: 
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(2.98) 

For these equations it is important to remember that β ≠ 0.The logit 
function can also be used for an approximation of a dynamic fatigue trial 
and can thus be easily compared with the arcsin P  transformation.  
This was done for example by Dorff in [ 2.9]. 

In this comparison, Equation (2.96) is transformed into a linear equation 
just as in the arcsin P  transformation. 

This transformation according to [ 2.9] for the logit transformation is: 

t
R
FF β+α== lnlogit , (2.99) 
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whose parameters are again determined by regression. The term logit F 
serves as a determining characteristic of the logit distribution. 

The density functions of the logit distribution show a distinct symmetri-
cal behaviour, thus making the logit distribution an unsuitable description 
of failure behaviours for mechanical products. 

2.2.5.6 Shifted Pareto Distribution 

The Pareto distribution is used for example in aviation for the estimation 
of the minimal lifetime of components or in the field of reinsurance for the 
modelling of major damages. 

According to [2.20,  2.22], the density function of the Pareto distribution 
is: 

( )
⎟⎟
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⎛
+

ξ
−
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⎞
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ξ

+
α

=
11

11 ttf , (2.100) 

where α stands for a dimensioning parameter which sets the initial value of 
the density function for t = 0, and ξ stands for a shape parameter which 
describes the failure slope. It is required that α > 0 and ξ > 0. 

Through integration the failure probability can be calculated as 
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+−=
ttF  (2.101) 

resulting in the survival probability:  

( ) ξ
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+=
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1 ttR  (2.102) 

and the failure rate:  
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According to [2.20], the expected value is: 

( ) const.
1

=
−

=
ξ

αtE  (2.104) 
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and the variance is: 
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2.2.5.7 SB Johnson Distribution 

With its 4 parameters, the SB Johnson distribution is able to represent 
the failure behaviour of a component or system over the entire lifetime 
with early, random and wearout failures. Thus, this distribution is able to 
recreate the complete “bathtub characteristic” of the failure rate. 

The density function for the SB Johnson distribution according to [2.37] 
is: 
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(2.106) 

Here, ε is the limit from the left side, δ is the dimensioning parameter 
and thus ε + δ is the limit from the right side of the random variable. The 
parameters η and γ are shape parameters. In general, the parameters must 
thereby fulfil the following conditions: 

  0δ  , γ , 0η  , δεε >∞<<∞−>+<< x . 

The failure probability as well as the survival probability, failure rate, 
expected value and variance of the SB Johnson distribution can only be 
calculated numerically. 

2.3 Calculation of System Reliability with the Boolean 
Theory  

Based on the components’ failure behaviour it is possible to calculate 
the failure behaviour of a complete system using Boolean system theory 
[2.2,  2.33,  2.35,  2.36,  2.39]. Here, the failure behaviour for each individual 
component can be represented as described in Section 2.1 e.g. with a 
Weibull distribution with the parameters b, T and t0. 

A few important prerequisites are given for application of the Boolean 
theory: 
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• The system must be non-repairable, that is, the first system failure ends 
the system’s lifetime. Thus, for repairable systems it is only possible to 
calculate the reliability up to the first system failure. 

• The system elements must be either in a “functional” or “failed” state of 
condition.  

• The system elements are “independent”, that is, the failure behaviour of 
a component is not influenced by the failure behaviour of another com-
ponent.  

Under these conditions it is possible to deal with numerous mechanical 
engineering products using Boolean theory. 

Furthermore, it is possible to build “reliability schematic diagrams” out 
of the system elements, out of which it is possible to recognize the reliabil-
ity structure of a system. The reliability schematic diagram shows the ef-
fect of the failure of one component on the complete system. The connec-
tions between input I and output O in the diagrams in  

Figure 2.44 and Figure 2.45 represent the possibilities for the functional-
ity of the system. 

The system is then functional, if there is at least one connection in the 
reliability schematic diagram between input and output, in which all com-
ponents along the connection are intact. For a serial structure,  

Figure 2.44a, the failure of one arbitrary component leads to the failure 
of the complete system. For a parallel structure,  

Figure 2.44b, the system does not fail until all components have failed.  
Figure 2.44c shows a combination of a serial and parallel structure. 
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Figure 2.44. Basic structures of reliability schematic diagrams:  
    a) Serial structure    
    b) Parallel structure   
    c) Combination of serial and parallel structures 

It should be noted, that the structure of the reliability schematic diagram 
does not necessarily correspond to the mechanical setup of a design. It is 
possible that a component appears more than once in the reliability sche-
matic diagram. 

Figure 2.45 shows an example for the creation of a reliability schematic 
diagram. The example system “free wheel clutch” consists of three shafts 
(S1, S2, S3), which are connected by 2 free wheel clutches (F1, F2), 
Figure 2.45a and b. 
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Figure 2.45. Creation of a reliability schematic diagram:  
 a) Drawing of the example system “free wheel clutch”  
 b) Principle sketch of the free wheel clutch system   
 c) Serial structure for the failure cause “interruption”   
 d) Parallel structure for the failure cause “clamping”  
 e) Complete reliability structure for the system free wheel clutch  

The system input is indicated by I and the system output with O. The 
function of the system consists of transferring torque in one rotational di-
rection and interrupting the connection between I and O in the other rota-
tional direction through a response of the free wheel clutch, so that no fur-
ther torque transfer is allowed. 

The failure cause to be dealt with here for the free wheel clutch is either 
interruption or clamping. Interruption results in a blocking of torque trans-
fer in both rotational directions, while clamping results in a rotational 
movement of the shaft in both directions. Figure 2.45c shows the reliability 
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schematic scheme for interruption, a serial structure, since after the inter-
ruption of one free-wheel clutch, the system function is no longer fulfilled.  
In the case of clamping, Figure 2.45d, the reliability schematic diagram 
describes a parallel structure, due to the fact that when one free-wheel 
clutch clamps, the second free wheel clutch allows further functionality of 
the system. The complete block diagram, Figure 2.45e, results in a serial 
circuit made up of both partial structures in Figure 2.45c and Figure 2.45d. 

Most mechanical products possess a serial reliability structure, since the 
introduction of redundancies is elaborate. This is the case especially for 
repetition and high volume parts. For critical components a larger dimen-
sioning with a relatively high safety is carried out instead of a redundancy.  
Thus, the failure behaviour is improved in a simpler manner. 

The calculation of the reliability for a serial system is calculated by the 
product of all survival probabilities: 

( ) ( ) ( ) ( )tR...·tRtRtR CnCCS ⋅⋅= 21  or ( ) ( )∏
=

=
n

i
CiS tRtR

1

. (2.107) 

With a definite reliability of each component (RC(t) < 1), a value results 
for the system reliability that is less that the reliability of the weakest ele-
ment. The system reliability becomes less with each additional component.  
For numerous components, the system has a low reliability, despite high 
individual component reliabilities, Figure 2.46. 

If the component failure behaviour can be described by a three paramet-
ric Weibull distribution, then the following equation can be used for the 
calculation of the component reliability: 
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Figure 2.46. Decrease in the system reliability with an increasing amount of com-
ponents with varying component reliabilities RC(t) 

The system reliability can be calculated with Equation (2.107): 
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The time t corresponding to a certain system reliability RS(t) can only be 
determined iteratively, except for a few exceptions. For RS(t) = 0,9 it is 
possible to determine the commonly used B10S lifetime of the system. 

In special cases, the function RS(t) resulting from the component reli-
abilities represents an exact Weibull distribution. However, due to the uni-
versality of the Weibull distribution, the system reliability can be estimated 
nearly precisely with a certain Weibull distribution. 

The reliability of a parallel system is calculated by the following equa-
tion: 

( ) ( )( ) ( )( ) ( )( ) or1111 21 tR·...·tR·tRtR nS −−−−=  (2.110) 
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( ) ( )( ).11
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iS tRtR  (2.111) 

Here, n stands for the redundancy grade of the system. 

2.4 Exercises to Lifetime Distributions 

Problem 2.1 
Maennig conducted dynamic fatigue trials on slightly notched shafts. The 
shafts were loaded with sinusoidal, pure cyclic stress-strain oscillations 
[ 2.31].  

96

R 32
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16
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Figure 2.47. Notched shafts for dynamic fatigue trials  

The following failure times resulted for a trial with n = 20 shafts with a 
deflection stress of 380 N/mm2: 

100,000 load cycles, 90,000 load cycles, 59,000 load cycles,
117,000 load cycles, 177,000 load cycles, 98,000 load cycles,
125,000 load cycles, 118,000 load cycles, 99,000 load cycles,
132,000 load cycles, 97,000 load cycles, 87,000 load cycles,
126,000 load cycles, 107,000 load cycles, 66,000 load cycles,
186,000 load cycles, 158,000 load cycles, 80,000 load cycles,
69,000 load cycles, 109,000 load cycles,  

a) Classify the results and create the histograms and the empirical func-
tions,  

b) the failure density,  
c) the failure probability,  
d) the survival probability and  
e) the failure rate. 

Problem 2.2 
For further evaluation of the trial results in Problem 2.1 calculate the fol-
lowing: 
a) the measures of central tendency (mean, median and mode) and 
b) the statistical spread values (variance and standard deviation). 
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Problem 2.3 
Draw the respective diagrams (linear scaling) for the following parameters 
of a Weibull distribution: 
a) Weibull density functions: 

b = 1.0 T = 2.0 t0 = 1.0 
b = 1.5 T = 2.0 t0 = 1.0 
b = 3.5 T = 2.0 t0 = 1.0 

b) Weibull failure probabilities: 
b = 1.0 T = 2.0 t0 = 1.0 
b = 1.5 T = 2.0 t0 = 1.0 
b = 3.5 T = 2.0 t0 = 1.0 

Problem 2.4 
The following density is given for a rectangular distribution: 

( )
⎪⎩

⎪
⎨
⎧ ≤≤

−=
otherwise    0

for    1 bta
abtf .  

Calculate the failure probability F(t), the survival probability R(t) and the 
failure rate λ(t) and show the results graphically. 

Problem 2.5 
The reliability of a technical component is given by the equation: 

( ) ( )( ) 02 ≥−= tfort·exptR λ   

Calculate the failure density, the failure probability and the failure rate.  
Show the results graphically. 

Problem 2.6 
The lifetime of a component can be described by a normal distribution 
with µ = 5,850 h and σ = 715 h.  

a) Plot the distribution in a normal distribution chart. 
b) What is the probability that a component does not fail before the point 

in time t1 = 4,500 h? 
c) What is the probability that a component fails before the point in time 

t2 = 6,200 h? 
d) What is the probability that a component fails between the times 

µ ± σ? 
e) How long, t3, can a component survive with a safety of 90%? 
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Problem 2.7 
The failure behaviour of a pump can be well described with a log normal 
distribution with µ = 10.1 h and σ = 0.8 h. 

a) Plot the distribution in a log normal chart.  
b) What is the probability that the pump does not fail before the time 

t1 = 10,000 h? 
c) What is the probability that the pump fails before the time 

t2 = 35,000 h? 
d) What is the probability that the pump fails between the times t1 and t2? 
e) How long, t3, can the pump survive with a safety of 90%? 

Problem 2.8 
The lifetime (in hours) of an electrical component can be described by the 
exponential distribution )500/(1    ;0    )exp()( htttf =λ≥⋅λ−⋅λ= . 

a) What is the probability that the component does not fail before the 
time t1 = 200 h? 

b) What is the probability that the component fails before t2 = 100 h? 
c) What is the probability that the component fails between the times 

t3 = 200 h and t4 = 300 h? 
d) How long, t5, can the component survive with exactly 90% safety and 

which range of time can the component survive with at least 90% 
safety? 

e) What value must the parameter λ have for a lifetime distribution where 
the probability is 90% so that the lifetime of a component is at least 50 
h? 

Problem 2.9 
Most failure behaviours in mechanical engineering are described by the 
Weibull distribution. Calculate the expected value (also called the MTBF 
value or the MTTF value) for a two parametric and three parametric 
Weibull distribution. List the actual values for the expected value for the 
follow parameter combinations: 

a) b = 1;     T = 1,000 h;  t0 = 0 h; b) b = 0.8;    T = 1,000 h;  t0 = 0 h; 
c) b = 4.2;  T = 1,000 h;  t0 = 100 h; d) b = 0.75;  T = 1,000 h;  t0 = 200 h; 

Note: Use the tabulated gamma function 

( ) ∫
∞

−− ⋅⋅=Γ
0

1 dttex xt .  
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Problem 2.10 
The failure behaviour of grooved ball bearings can be described very well 
with the Weibull distribution. The following is given: shape parameter b = 
1.11, factor ftB = t0 / B10 = 0.25 and the B50 lifetime B50 = 6,000,000 load 
cycles. 

a) What is the B10 lifetime? 
b) Determine the Weibull parameters T and t0 of the failure distribution.  
c) What is the probability that a component fails between 

t1 = 2,000,000 load cycles and t2 = 9,000,000 load cycles? 
d) How long, t3, can a component survive with a safety of 99%?  
e) For which shape parameter b (with constant T and t0) does a lifetime 

distribution result with a probability of 50% that a component survives 
at least 5,000,000 load cycles? 

Problem 2.11  
Calculate the mode tm of a three parametric Weibull distribution for b > 1.  
Check the result graphically for the following parameters: b = 1.8; 
T = 1,000 h; t0 = 500 h. 

Tip: df(tm) / dt = 0.  

Problem 2.12 
The following information is known about the failure behaviour of an en-
gine: The failure behaviour is described by a two parametric Weibull dis-
tribution. At time t1 the failure probability is x1, at time t2 the failure prob-
ability is x2. Conditions: t1 < t2 and x1 < x2. Calculate b and T for the failure 
distribution. 

2.5 Exercises to System Calculations  

Problem 2.13 
Determine the system reliability function RS(t) for the system shown below 
as a function of the respective component reliabilities Ri(t): 
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Figure 2.48. Block diagram of Problem 2.13 

Problem 2.14 
Describe the general relationships between the failure probability, failure 
density and failure rate of a serial system. 

Problem 2.15 
The reliability block diagram of an ABS system is given: 

X21 X31 X41 X51 X61

X22 X32 X42 X52 X62

X1

 
Figure 2.49. Reliability block diagram of Problem 2.15  

The failure behaviour of all 11 components is described by the exponential 
distribution. The time independent failure rates corresponding to one year 
are listed in the following table: 

Table 2.1. Failure rates for the system components in Problem 2.15 
components: part: failure rate: 
X1 supply λ1 = 4 ⋅ 10-3 a-1 
X21, X22 cables λ21 = λ22 = 7⋅ 10-3 a-1 
X31, X32 relay λ31 = λ32 = 5⋅ 10-3 a-1 
X41, X42 sensors λ41 = λ42 = 0,2⋅ 10-3 a-1 
X51, X52 electronics λ51 = λ52 = 1,5⋅ 10-3 a-1 
X61, X62 control valves λ61 = λ62 = 0,3⋅ 10-3 a-1 

a) Determine the equation for the system reliability RS(t) as a function of 
the component reliabilities Ri(t).  

b) What is the survival probability of a useful life of 10 years? How 
many ABS systems out of 100 have failed after this time?  

c) Determine the MTBF value (= expected value) of the system.   
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d) Determine the equation for the iterative calculation of the B10 lifetime 
of the system. Estimate a suitable initial value.  

e) No system failure has occurred up the point in time t1 = 5 years. With 
this information (condition), what is the probability for a useful life of 
10 years? 

Problem 2.16 
The following reliability block diagram is given for a system. The failure 
behaviour of all parts is described by the exponential distribution. The 
failure rates are given as: 

1
OI

3

2
4

 
Figure 2.50. Block diagram for Problem 2.16 

a) What is the system reliability after 100 h of operation? 
b) How many systems out of 250 will fail in a time period of 100 h? 
c) What is the MTBF value of the system?  
d) Determine the equation for the iterative calculation of the B10 lifetime 

of the system and estimate a suitable initial value for the calculation.  

Problem 2.17 
Lifetime trials are carried out for a system consisting of n = 9 identical 
gears in serial connection. The failure behaviour of one gear is described 
by a three parametric Weibull distribution. What is the reliability function 
for the system? The B10 lifetime of the system is B10S = 100,000 load cy-
cles. It is assumed that each gearwheel has a shape parameter of b = 1.8 
and a factor of ftB = 0.85 (failure due to tooth failure). What is the charac-
teristic lifetime T of one gear? 

 

 
 
 
 
 

λ1 = 2.2⋅ 10-3 h-1

λ2 = λ3 = 4⋅ 10-3 h-1 

λ4 = 3.6⋅ 10-3 h-1 

2.5 Exercises to System Calculations
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3 Reliability Analysis of a Transmission 

The main target of work in reliability is to identify or to forecast the ex-
pected failure behaviour of a product as early as possible. By this, weak 
points in design can be determined and eliminated in early stages. In order 
to avoid extensive and time consuming trials one strives for calculation 
methods, which are based on the statistic and probabilistic basics described 
earlier. An unerring prognosis can only be achieved, if the failure behav-
iour of the components is relatively well known.  

The early and random failures in sections 1 and 2 of the bathtub curve 
are difficult to pre-estimate, as already mentioned in Section 2.2.1.4. They 
are conditionally useful for probabilistic calculation methods. The follow-
ing executed reliability determination is therefore limited to wearout fail-
ures (section 3 of the bathtub curve), which is, in most cases, the most 
dominant failure cause. The developed procedure is based on the described 
calculations methods mentioned in [3.2,  3.3,  3.4,  3.5,  3.6,  3.7,  3.9]. 

The system used for this example is a single-stage transmission, which 
is shown in Figure 3.1. On the input shaft (IS) of the transmission is the 
small transmission input gear. The power is transmitted by the larger gear 
onto the transmission output shaft (OS). Besides the bearings for the 
shafts, the transmission consists of a transmission housing with a housing 
cover and different small bearing covers, which are sealed by sealing com-
pounds or radial seal rings. The transmission example is therefore a man-
ageable system due to its simple input and output devices and transmission 
elements. 

To determine the expected system reliability it is useful to refer to the 
flowchart shown in Figure 3.2. The main focus of the system analysis is, to 
determine the components which are relevant to the reliability and to set 
up a reliability structure of the system. Afterwards, the system elements 
are considered separately and their reliability is determined. The analysis is 
concluded with a reliability calculation for the complete system. In the 
following sections, these three sequential steps will be shown in detail.  
 

B. Bertsche, Reliability in Automotive and Mechanical Engineering. VDI-Buch,  
doi: 10.1007/978-3-540-34282-3_3, © Springer-Verlag Berlin Heidelberg 2008 
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Figure 3.1. Example system “single-stage transmission” 
 

analysis of a system

determination of the
reliability for each system element 

calculation of the
system reliability  

 
Figure 3.2. Flowchart for the determination of system reliabilities 

3 Reliability Analysis of a Transmission 



www.manaraa.com

86      3 Reliability Analysis of a Transmission 

3.1 System Analysis 

3.1.1 Determination of System Components 

At the beginning of the analysis, it is useful to identify all system com-
ponents in order to study an overview of system, see Figure 3.3. Compo-
nents and/or interfaces of components can be regarded as components. 
    In Figure 3.4 all components of the example system “transmission” are 
listed. This small and manageable system already consists of 27 compo-
nents. Shrink fits, welded joints, etc. are interfaces of components. 
    Besides the components, these interfaces can also be critical elements 
for the system reliability. All components of the system are illustrated in 
the function block diagram, see Figure 3.5 
 

determine the constructional elements of a system
(constructional element = constructional part or constructional interface)

choose the system elements to be calculated
(system element = constructional element per type of damage)

classify system elements
 (ABC division of FMEA / FMECA analysis)

create a reliability structure (Boolean serial system)
with the A and B system elements

(option: use of flow of outputs)
 

 
Figure 3.3. Flowchart of the system analysis 
 

housing

locking washer 2

housing cover

spacer ring

housing bolts

bearing cover 1

housing cover sealing

bearing cover 2

input shaft

bearing cover 3

output shaft

bearing cover 4

gearwheel 1

bearing cover sealing 1

gearwheel 2

bearing cover sealing 2

fitting key connection

bearing cover sealing 3

roll bearing 1

bearing cover sealing 4

roll bearing 2

shaft seal 1

roll bearing 3

shaft seal 2

roll bearing 4

hex bolt 1-12

locking washer 1

 
 
Figure 3.4. Components of the example system “transmission” 
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3.1.2 Determination of System Elements 

Some of the components can fail for several reasons. A gear, for exam-
ple, can lose its functionality by tooth failure, pittings or scuffing. For the 
later calculation it is recommended that consideration to the damage poten-
tial peculiar to a specific element. Therefore, system elements are defined, 
which divide the components according to their kind of damage. For the 
example above, the system is expanded to 28 elements. The two compo-
nents gear 1 and gear 2 were thereby subdivided further into two kinds of 
damages: “tooth failure” and “pittings”.  

3.1.3 Classification of System Elements  

The diverse system elements fulfil quite different functions and thereby 
contribute differently to the reliability of the system. Therefore, it is not 
reasonable and/or permitted to consider all system elements equally. A 
classification of the system elements will thus be executed. The elements 
are classified in reliability, relevant and neutral parts. Furthermore, it is 
necessary to differ whether the parts underlie a defined load or if their 
stress can only be collected inexactly. A developed ABC analysis of the 
system elements, which takes these aspects into account, is shown in 
Figure 3.6. It is possible to calculate the failure behaviour of A system 
elements whereas for B system elements one depends on experience and 
trials. The reliability neutral C system elements are not taken into account 
in any further calculation. 
 

A parts (prone to risk)

e.g.

B parts (prone to risk)

e.g.

C parts (neutral to risk)

e.g.

● loaded by defined static stress;
load profile is given;
power transmitting

● lifetime calculations are 
possible and correspond to
reality 

● failure behaviour is given by
Wöhler experiments;
shape parameter b > 1.0 

● loaded many by friction,
abrasion, extreme
temperatures; dirt and 
corrosion

● lifetime calculations are not 
possible or do not correspond
to reality

● failure behaviour must be
estimated or determined by
experiments;
shape parameter b ≥ 1.0 

● randomly loaded by impacts,
friction, abrasion, etc 

● calculational dimensioning only
provisorily necessary or 
irrelevant

● only random and early failures;
shape paramenter 0 < b ≤ 1.0

 
Figure 3.6. ABC classification of system elements 
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The developed ABC classification is suited for small and manageable 
systems. For new and complex systems, the elements which pose critical 
influences upon the reliability should be determined by a complete FMEA 
analysis (see Chapter 4). 
 

housing

locking washer 1

housing cover

locking washer 2

housing bolts

spacer ring

housing cover sealing

bearing cover 1

input shaft

bearing cover 2

ouput shaft

bearing cover 3

gear 1 breakage

bearing cover 4

gear 2 breakage

bearing cover sealing 1

gear 1/2 pittings

bearing cover sealing 2

fitting key connection

bearing cover sealing 3

roll bearing 1

bearing cover sealing 4

roll bearing 2

shaft seal 1

roll bearing 3

shaft seal 2

roll bearing 4

hex bolt 1-12

A parts B parts C parts

 
 
Figure 3.7. ABC classification of the system elements for the example system 

With pre-calculations, experience from similar transmissions and techni-
cal discussions, the classification of the system example “transmission” are 
shown in Figure 3.7.  

The complete system, which includes 28 system elements, was reduced 
to 12 elements that are relevant for the reliability study. The relevant ele-
ments are, apart from the radial seal rings, the power transmitting parts: 
input and output shafts, gears, fitting key connection and bearings. 

3.1.4 Determination of the Reliability Structure  

After the classification, the next step of the analysis is the structure de-
termination of the system, see Figure 3.3. To set up the reliability sche-
matic, it is advisable to use function block diagrams or the schematic of 
the power flow. Both types of diagrams show how the system elements are 
stressed and how their failures affect the rest of the system. Starting off 
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with one of these diagrams, the reliability block schematic can be created 
quite easily.  
If one examines the function block diagram of the transmission, see Figure 
3.5, it can be seen, that all system elements are necessary for a correct 
system function. Thus, the reliability block schematic is a pure serial struc-
ture, see Figure 3.8.   
 

input shaft ouput shaft gear 1, breakage

gear 1/2 pittingsfitting keyroll bearing 2

shaft seal 1 shaft seal 2

gear 2, breakage

roll bearing 1

roll bearing 3 roll bearing 4  
 
Figure 3.8. Reliability block schematic of the transmission (Boolean serial struc-
ture) 

The system reliability Rs can be calculated for a Boolean serial system 
structure according to Section 2.3, which is the product of the reliability 
for all the system elements RE : 

.RRR

RRRRR

RRRRR

RSRRSRbearing

bearingbearingbearingkeyfittingpittings,/gear

failuretooth,gearfailuretooth,gearOSISsystem

214

321 21

 2 1

⋅⋅⋅

⋅⋅⋅⋅⋅

⋅⋅⋅=
 (3.1) 

The system Equation (3.1) describes the reliability relevant system ele-
ments and their functional dependencies. Therefore, it represents the actual 
result of the system analysis. 
 

3.2 Determination of the Reliability of System Elements 

After the analysis of the system, it is still necessary to determine the un-
known failure behaviour of the reliability critical system elements, see 
Figure 3.9. 
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A system elements

carry out service strength (operational stability) 
calculations (i.e. damage accumulation...)
Result:     lifetime, time, etc. for a certain failure

probability (most often the B10   lifetime)
results in the 1st parameter of the Weibull
distribution (location parameter, B10 or t0)

determine 2nd and, if needed, 3rd parameter 
(b und t0) of the Weibull distribution (calculate, 
estimate, ...) 

collect material data
(Wöhler curve, ...)

determine load
(load profile, σ, temp., ...)

failure behaviour of system elements:
• collect values from similar cases
• make reasonable assumptions
• guess
• experiments

B system elements
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Figure 3.9. Schematic of the determination of the reliabilities of the system ele-
ments 

For the A system elements relatively accurate load spectrums and 
Wöhler curves (SN-curves) already exist. With these data it is possible to 
execute operating fatigue strength calculations, with which the lifetime of 
the system elements can be determined. In most cases, the calculated life-
time corresponds to the B10 or B1 lifetime and is therefore related to a cer-
tain failure probability. The conversion of the B10 and/or B1 lifetime into 
the characteristic lifetime T is given in the Equations (7.1) and (7.2). In the 
probability net, one can determine one point and/or one parameter of the 
distribution: the scale parameter. With the knowledge of the remaining 
parameters of the distribution – shape parameter b and, if necessary, the 
failure free time t0 (location parameter) – one yields the complete failure 
behaviour of the element. 

The determination of failure behaviour for B system elements is facili-
tated by experience, or if not, the failure behaviour should be estimated. 
Trials for B system elements can prove efficacious in determination of the 
reliability.   

Apart from the radial seal ring, all elements in the example “transmis-
sion” are A system elements, for which the failure behaviours can be cal-
culated. With an assumed input load spectrum the important stress factors 
such as root bending stresses, Herzian stresses, bearing stresses, etc. were 
calculated for the A system elements.  



www.manaraa.com

92      3 Reliability Analysis of a Transmission 

The stresses, together with the Wöhler curves (SN-curves) and the bear-
ings data, lead to the summarized lifetimes, see Figure 3.10.   
 

input shaft fatigue resistant
output shaft fatigue resistant
gear 1 breakage 70,000 revolutions IS (B1)  
gear 2 breakage 120,000 revolutions IS (B1)  
gear 1/2 pittings 500,000 revolutions IS (B1)  
fitting key connection fatigue resistant
roll bearing 1 1,500,000 revolutions IS (B10) 
roll bearing 2 fatigue resistant
roll bearing 3 fatigue resistant
roll bearing 4 2,500,000 revolutions IS (B10)  

 
Figure 3.10. Calculated B1 and B10 lifetimes of the system elements 

According to the definition, the B1 and B10 lifetimes are related to a fail-
ure probability of F(t) = 1% and/or F(t) = 10%. The B1 and B10 lifetimes 
can be transferred into the characteristic lifetime T with the Equations (7.1) 
and (7.2). The result: one parameter of the failure distribution is known: 
the scale parameter. The two other parameters of the distribution – the 
shape parameter b and, if necessary, the failure free time t0 – have been 
chosen according to the values given in Chapter 7. All Weibull parameters 
of the non endurable A system elements are given in Table 3.1. 

For the two B system elements, the radial seal rings 1 and 2, the failure 
behaviour cannot be calculated. For those two elements, however, failure 
statistics of comparable transmissions are known and it can be said that 
such seals fail exclusively at random. Therefore, the shape parameter b = 1 
is assigned to both system elements. For the characteristic lifetime the 
values of failure statistics from comparable transmissions have also been 
taken, see Table 3.2. It was not possible to identify a failure free time t0 for 
typical random failures out of the failure statistics.  

With the values given in Table 3.1 and Table 3.2 the complete failure 
behaviour of the system elements can be displayed, see Figure 3.11. 
Table 3.1. Weibull parameters for A system elements 

 b T t0 ftB 
gear 1 tooth failure 1.4 106,600 68,600 0.9 
gear 2 tooth failure 1.8 185,000 114,500 0.85 
gear 1/2 pittings 1.3 2,147,300 450,700 0.6 
bearing 1 1.11 9,400,000 300,000 0.2 
bearing 4 1.11 15,700,000 500,000 0.2 
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Table 3.2. Weibull parameters for B system elements 

 b T t0 ftB 
RSR 1 1.0 66,000,000 0 0 
RSR 2 1.0 66,000,000 0 0 
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Figure 3.11. Failure behaviour of the system elements and of the system (System: 
dashed; B10-System = 76,000 rotations of the input shaft) 

3.3 Calculation of the System Reliability 

The calculation of the system reliability is the final step in the calcula-
tion. Here, the assigned reliabilities of the system elements are inserted in 
the system Equation (3.1), see Figure 3.12.  

The complete system behaviour can be displayed graphically, if a curve 
is put through several pairs of variants RS(tS). The system failure curve 
runs left of the element failure curves, see Figure 3.12. In many cases the 
complete system failure behaviour is not of interest, but rather which sys-
tem lifetime can be achieved for a certain system reliability or which sys-
tem reliability will be reached for a given system lifetime. These values 
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can be determined out of the system equation by iteration and/or an ana-
lytical solution, see Figure 3.12.   
 

Desired: system lifetime for the best
system reliability
(ex.: ts = ? for Rs(t) = 90%) 

iterative solution:
vary ts in  the system equation until
the desired Rs(t) results
(ignore components for which t0 > ts) 

analytical solution:
substitute ts in the system equation Rs(t)
(ignore components for which t0 > ts)

Desired: system reliability for the best
system lifetime
(ex.: Rs(t) = ? at ts = 100.000 LC)  

After determining several coordinates 
for Rs(ts) the curves for the system
failure behaviour can be realized.

F=1-R
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Figure 3.12. Schematic of the calculation of the system reliability 

For the calculation of the system reliability, one must differentiate be-
tween the system elements with a two-parametric and with a three-
parametric Weibull distribution. System elements, described by a two-
parametric Weibull distribution, must always be considered in the calcula-
tion of the system reliability. Their reliability already reaches values less 
than 1 at the lifetime of t = 0. Each additional system element with a two-
parametric Weibull distribution therefore decreases the system reliability 
directly. The statement, that further parts unavoidably decline the system 
reliability, is thus proven for two-parametric system elements.  

System elements with a three-parametric Weibull distribution do not al-
ways have to be taken into account for the calculation of the system reli-
ability. Only those three-parametric system elements can cause failures, 
whose failure free time t0 is smaller than the regarded lifetime t. Thus, 
three-parametric system elements only have an influence on the system 
lifetime txS (or BxS) if: 

xStt <0 . (3.2) 
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If a system is enhanced by further three-parametric system elements, 
whose failure free time t0 is greater than, for example, the B10S lifetime, 
then these elements have no effect on the B10S reliability of the system. A 
direct relationship between the amount of parts and system reliability is not 
given in these cases.  

It should be noted, that for a system with two-parametric and three-
parametric system elements, the system has a two-parametric distribution. 
This means that already at t = 0 failures of two-parametric system elements 
can occur.  

The example system “transmission” has mainly three-parametric system 
elements. Only the two radial seal rings RSR 1 and RSR 2 have a two-
parametric Weibull distribution. For the calculation of the system reliabil-
ity of the example transmission, the failure behaviour is defined by the 
four system elements “gear 1 tooth failure”, “gear 2 tooth failure”, “RSR 
1” and “RSR 2”. The system equation in this case is: 

21 ,2 ,1 RSRRSRfailuretoothgearfailuretoothgearsystem RRRRR ⋅⋅⋅= . (3.3) 

With the help of an iterative solution, the B10S system lifetime of the in-
put shaft is 76,000 rotations, see Figure 3.11.  

A predominant amount of the failures is caused by the system element 
“gear 1 tooth failure”. This system element with this type of damage repre-
sents a weak point in the system. Together with the system elements “gear 
2 tooth failure”, “RSR 1” and “RSR 2”, the complete reliability of the 
transmission is defined. The remaining parts are well dimensioned and 
their failure is only expected to occur at a later point in time.  

The four determined reliability relevant system elements are a typical 
example for such so called weak points of a system that constitute mainly 
or almost exclusively the failure behaviour. With a partial or complete 
description of the component failure behaviour in a three-parametric 
Weibull distribution, an extensive reliability analysis consequently leads to 
the identification of weak points [3.1].  

An updated procedure can be found in [ 3.8,  3.10]. An overview of the 
modified methodology is shown in Figure 3.13. 
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Figure 3.13. Updated procedure for the calculation of system reliability 
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4 FMEA – Failure Mode and Effects Analysis 

FMEA can be understood as the most commonly used and well known 
qualitative reliability method in the area of reliability methodology. It is a 
dynamic preventive reliability method used in the modification of systems 
and accompanies the design cycle for modification of components. The 
overall aim is to analyse and modify components in the light of experience 
to achieve an optimum criterion of reliability assessment. One significant 
criterion is the risk priority number (RPN) which will be discussed in the 
chapter.  

FMEA was developed in the mid sixties in the USA by NASA (National 
Aeronautics and Space Administration) for the Apollo project. Afterwards, 
this method generally applied procedure in aerospace and aeronautical 
engineering. Most literary resources concerning this method stem from the 
American Military Standard MIL-STD-1629A [4.1], and is required as an 
approval standard for all parts in aerospace and aeronautical engineering. 
The FMEA method is elaborately detailed and involves a clearly defined 
procedure. Further use of the FMEA method continued in nuclear technol-
ogy and in the automotive industry. The Ford Company in America was 
the first automotive company to integrate this method into its quality as-
surance concept, see Figure 4.1. 

 

B. Bertsche, Reliability in Automotive and Mechanical Engineering. VDI-Buch,  
doi: 10.1007/978-3-540-34282-3_4, © Springer-Verlag Berlin Heidelberg 2008 
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1963 NASA (Apollo project)
1965 aerospace & aeronautics (MIL-STD 1629A*)
1975 nuclear technology
1978 automotive industry (Ford)
1980 standardization in Germany

VDA 4 Part 
System FMEA

1986 further application in the 
automotive industry

1990 application in electronics and 
software development

1996 enhancement of the System FMEA
 

Figure 4.1. Origin of FMEA 

Due to the continually increasing quality requirements made by custom-
ers, new legal restraints (production liability laws [4.5]) and norms 
(DIN ISO 9000 ff [4.2]), increasing product complexity, increasing cost 
demands, requirement for shorter development periods and lastly due to an 
increasing environmental awareness, FMEA has become a solid compo-
nent in today’s quality assurance.  The FMEA procedure specified by the 
German Association of the Automotive Industry (VDA - Verband der 
Automobilindustrie) [4.7] is the prevailing standard for methodical appli-
cation of an FMEA analysis in Germany.   

In the following text the basic principles as well as general fundamentals 
concerning the FMEA methodology and the procedure of a Form FMEA 
according to VDA 86 will be discussed. Emphasis is put on the FMEA 
according to VDA 4.2, which is summarized in Section 4.4. The FMEA 
procedure according to VDA 4.2 is the most extensive and commonly used 
procedure, especially in the automotive industry, in Germany and in 
Europe. 
 

 4 FMEA – Failure Mode and Effects Analysis 
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4.1 Basic Principles and General Fundamentals of FMEA 
Methodology 

The abbreviation FMEA stands for “Failure Mode and Effects Analysis”, 
see Figure 4.2. The FMEA method is specified under this name in the 
DIN 25 448 [4.3] since 1980. 

 

F M E A ? 

• Failure Mode and Effects Analysis 

• Failure Effects Analysis (DIN 25 488) 

• Behaviour analysis 

• Analysis of failure modes, failure effects and failure causes 

Figure 4.2. Definition of the term FMEA 

FMEA is a systematical method. Its fundamental idea is the determina-
tion of all possible failure modes for arbitrary systems, subsystems, or 
components. At the same time the possible failure effects and failure 
causes are presented. The procedure is concluded with a risk assessment 
and specification for optimization actions, see Figure 4.3. The aim of the 
method is to recognize the risks and weak points of a product as early as 
possible in order to enable execution improvements in a timely manner. 

 

FMEA is a method to discover  

• potential failure modes 
• potential failure effects 
• potential failure causes 

for components or system parts; the risk is assessed and actions for 
optimization are determined. 

Figure 4.3. Fundamental idea of FMEA  

FMEA deals with a risk assessment integrated into the development and 
process planning of new products. It is an important factor in quality as-
surance before a new production cycle takes place. FMEA belongs to reli-
ability analysis and must be carried out systematically, without interrup-
tion, preemptively and team-oriented.   

One version of FMEA is the FMECA (Failure Mode, Effects and Criti-
cality Analysis), which enhances the original FMEA with a separate risk 
characterization. 
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FMEA is made up of various procedures according to the type and com-
plexity of the system to be assessed or according to the desired results. An 
overview of the various FMEA procedures used most often is shown in 
Figure 4.4. 

 

complete system (vehicle)

subsystem
(transmission)

constructional
element
(gearwheel)

Process FMEADesign FMEA

System
FMEA

Function
FMEA

 
Figure 4.4. Types of FMEA 

The execution of an FMEA is carried out in interdisciplinary groups, the 
FMEA teams. It is reasonable to execute an FMEA in teams, since is it 
only then possible to incorporate all operational areas affected by the 
analysis. In practice it has been proven to be beneficial to execute an 
FMEA under the direction of an FMEA moderator, who is familiar with 
the methodical procedure. In this way, time consuming discussions con-
cerning the method can be avoided. 

In general, the FMEA team consists of a moderator, who offers me-
thodical knowledge, and the FMEA team, which offers technical knowl-
edge concerning the product or process to be analyzed. The moderator, 
who also may possess a marginal know-how concerning the product or 
process, certifies that the team members acquire a basic knowledge of the 
FMEA methodology. A brief training at the beginning of an FMEA as-
signment is useful. The team for a Design FMEA should be made up of 
experts from various fields, see Figure 4.5, whereupon at least the fields 
marked with an X, design and production planning, should be covered. 
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Figure 4.5. The FMEA team 

The distinction between technical knowledge in various fields and the 
methodology of an FMEA execution offers the advantage that the experts 
from the respective fields only offer their technical knowledge free of any 
methodical considerations. Thus, merely a basic knowledge of FMEA is 
adequate for the team of experts. 

The team size ranges ideally between 4 – 6 members.  If less than 3 – 4 
team members participate in the FMEA, one runs the risk that important 
sub areas will be forgotten or dealt with inadequately. On the other hand, if 
the team consists of more than 7 – 8 members, then the dynamical group 
effect is significantly weakened, which could lead to team members, who 
do not feel integrated into the discussions, which in turn leads to an inevi-
table upset in FMEA meetings. 

The following points are crucial for a successful FMEA: 
• Supervisors who support the FMEA actions definitely and visibly  
• A moderator supplying good methodical and moderating knowledge 
• A small, success-oriented team consisting out of involved members 

closely associated with the product 
A further suggestion for the organization of an FMEA is shown in 
Figure 4.6.  
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E

R

M

=

D:   Department
(initiator) head project leader

R:   Person responsible for the FMEA project
(designer, planer, draftsman, business)

E:   Experts
(designer, draftsman, testing engineer, planer,
manufacturer, laboratory assistant, resource 
planner, testing planer, master craftsman, machine
operator, further knowledge carriers

M:   Method specialist in FMEA
(may also be the same as one of the experts or 
responsible persons)

D

 
Figure 4.6. The FMEA team according to VDA 4.2 

4.2 FMEA according to VDA 86 (Form FMEA) 

The original FMEA procedure was carried out with the help of a form 
sheet. The workflow is oriented on given columns, which are filled out 
successively from left to right. The FMEA procedure can be divided into 
Design FMEA and Process FMEA. The first columns of the form sheet are 
reserved for the description of the components and their function. The next 
section of the form sheet deals with the risk analysis, which requires the 
most work out of all the sections of the form sheet. This is followed by a 
risk assessment in order to rank the numerous failure causes. The last step 
is a concept optimization derived from the analysis of the risk assessment, 
see Figure 4.7. 
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F M E A
System

Number: 1

Page:

Type/Model/Fabrication/Load:
System Structure

Item Code:
State:

Responsible:
Company: Created:15.12.2004

FMEA/System Element:
System Element

Item Code:
State:

Responsible:
Company:

Created:15.12.2004
Modified:15.12.2004

Funct-
ion

Potential
Failure 
Modes

Potential
Effects

C Potential
Causes

Current state
Current
Controls O S D RPN

Recom-
mended
Actions

Resp-
onsibility

Target
Complet-
ion Date

Action Results
Actions 
Taken

O S D RPN

System Element: System Element
System
Element

Concept Optimization

Risk
Assessment

Risk
Analysis

Constructional
Element,
Function

 
Figure 4.7. FMEA form sheet according to VDA 86 

The progression of the individual sections is shown in Figure 4.8. 
The fundamental step of an FMEA is the search for all conceivable fail-

ure modes (column 4). This step should be executed most carefully. Each 
failure mode not found can lead to dangerous failure effects and thus, later 
on, to drastic reliability problems. 

Options available to discover failure modes are shown in Figure 4.9.  An 
imperative principle is the observation of former arisen failures in similar 
cases. With the help of the experience of the FMEA participants all further 
failure modes can be derived. This takes place in team meetings, which are 
led by the FMEA moderator. Positive dynamic group effects should be 
taken into consideration. Very often, supplemental check lists are used in 
searching for failure modes. In particular dangerous cases it is helpful to 
use creative means to discover all failure modes. One very systematical 
approach is the examination of all functions along with their failure func-
tions and failure trees. 
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Type/Model/Fabrication/Load:
System Structure
FMEA/System Element:
System Element
Function Potential

Failure 
Modes

Potential
Effects

C Potential
Causes

Current state

Current
Controls

System Element: System Element
System
Element

2nd

column
3rd

column
5th

column
1st

column
6th

column

Design FMEA:
enter the constructional element and  its function(s)

Process FMEA:
enter the process steps and their functions

Advantages:
no component/process is left out
precise  search for failure modes
bottom-up method

Potential Failure Mode:
search for all possible/potential failure modes (prognosis!)

most important and most difficult step in an FMEA

Potential Failure Effects:
search for all possible/potential failure effects

Potential Failure Causes:
search for all possible/potential failure causes

Current Controls:
Definition/determination of all current controls  

Figure 4.8. Procedure in an FMEA form sheet 

• Damage statistics 

• Experience of the FMEA participants 

• Check lists (failure mode lists) 

• Creativity methods (Brainstorming, 635, Delphi, …) 

• Systematic analysis over functions or failure functions (failure 
trees) 

Figure 4.9. Possibilities for the determination of failure modes 
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The completed form sheet represents a “tree structure”, see Figure 4.10.  
A certain component has one or more functions and normally several fail-
ure modes. Each failure mode has again various failure effects and differ-
ent failure causes. 
 

F M E A
System

Type/Model/Fabrication/Load:
System Structure

Item Code:
State:

FMEA/System Element:
System Element

Item Code:
State:

Function Potential
Failure 
Modes

Potential
Effects

C Potential
Causes

Current state
Current
Controls

O S D RPN

System Element: System Element
System
Element

1

2

 
Figure 4.10. “Tree Structure” in an FMEA form sheet 

A risk assessment follows the risk analysis, where out of the large 
amount of failure causes found, the crucial risks are determined by estab-
lishing a ranking order. The assessment is carried out under 3 criteria.  
With the assessment value O (= Occurrence) one can estimate how prob-
able the occurrence of the failure cause is. This deals with the question of 
whether the failure is hypothetical or has already occurred often in the 
field. The assessment value S (= Severity) describes the severity of a fail-
ure effect. For example, if people are put into danger, the severity is evalu-
ated higher, whereas a minimal limitation of comfort would receive a re-
spectively lower value. With the assessment value D (=Detection) it is 
determined how successful the detection of the failure cause is before de-
livery to the customer. The ultimate measure here is the customer. How-
ever, the failure has already caused additional costs, but the customer does 
not receive an unreliable product. The three individual assessments are 
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brought together in a total assessment: RPN (Risk Priority Number), which 
is equal to the product of O, S and D, see Figure 4.11. With the RPN a 
ranking of the identified failure causes and their failure connection to the 
failure effect can be done, i.e. a priorisation of the failure causes is enabled 
by the RPN. 
 

Current state

Current

Controls

O S D RPN

How probable is the occurrence of the failure cause?

How severe is the failure effect?

How probable is detection of the failure cause before delivery?

RPN (total risk) = Occurrence X Severity X Detection

Risk Assessment:

 
Figure 4.11. Risk assessment 

The value scale for the assessment normally ranges from 1 to 10 in 
whole numbers. A value of 1 (very seldom occurrence, minimal severity, 
optimal detection) is assigned when the estimations are positive towards a 
reliable product. A value of 10 is assigned when the assessment tends to be 
extremely negative. Tables and charts are often used as helpful resources 
when assigning assessment values (see for example VDA tables in Section 
4.4.4). The risk priority number can range from 1 (1*1*1) to 1,000 
(10*10*10). The average RPN is normally 125 (5*5*5), see Figure 4.12. 
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Risk Assessment – Value Scale: 

• Value scale from 1 to 10  
   positive, opportune = 1 
   negative, poor  = 10 

• Assessment values assigned with the help of tables (VDA etc.) 

• Product of the individual assessment values = Risk Priority 
Number RPN:  
Risk of the ascertained potential failure cause 

Figure 4.12. Value scale for risk assessment 

The last phase of the FMEA is the optimization phase, which takes place 
after the risk assessment. First, the calculated Risk Priority Numbers are 
ordered according to their values. The optimization begins with the failure 
causes possessing the highest RPN value and ends, depending on the com-
plexity of the analysis, either at a certain lower limit or according to the 
Pareto principle, after 20 – 30% of the RPN’s have been optimized. The 
high individual assessment values must also be considered along with the 
RPN’s. A value of O > 8 means that the failure occurs most often.  Natu-
rally, this must be optimized. A severity value of S > 8 points to grave 
functional damages as well as security risks. Such cases must also be 
looked at more closely. Failures can hardly be detected for values of D > 8. 
Thus, the danger arises that these cases are not dealt with before the prod-
uct is delivered to the customers, see Figure 4.13. 
 

• Ranking of failure causes according to their RPN value 

• Concept optimization beginning with the failure causes with the 
highest RPN 
   ○ until a set limit RPN  
      (e.g. RPN = 125) or  
   ○ until a certain amount of failure causes  
      (common according to the Pareto principle: ca. 20 -
       30 %) 

• Failure causes with O > 8  
     S > 8  
     D > 8 observed separately  

• FMEA Result observed separately  

Figure 4.13. Procedure for concept optimization 
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The new optimization actions are entered on the right side of the form 
sheet for the optimized failure causes and the responsibility is recorded. 
An improved RPN is calculated for the improved state using the new as-
sessment values assigned to D, O, and S, see Figure 4.14.  

 

Item Code:

State:

Responsible:

Company:
Created: 15.12.2004

Modified: 15.12.2004

Initial state

O S D RPN

Recom-
mended
Actions

Responsi-
bility

Target
Comple-
tion Date

Action Results

Actions 
Taken

O S D RPN

solutions, 
actions

result,
assessment

 
Figure 4.14. Concept optimization in a form sheet 

4.3 Example of a Design FMEA according to VDA 86 

With this example the procedure of a classical FMEA should be clari-
fied. Actual occurred damage on an automatic transmission was chosen as 
an example for the analysis. Only this failure mode is considered and thus, 
the effectiveness of the FMEA is represented. A diagram of a five gear 
automatic transmission is shown in Figure 4.15. 

Br1

Br3
Br2

BrS

CS

C2
C1 F FS

 

Figure 4.15. FMEA example – automatic transmission [4.4] 
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It is sufficient for the analysis of this particular damage case to consider 
a small section of the transmission: the front axial bearing, see Figure 4.16. 

This bearing supports an outer rotating clutch plate carrier located 
across from a fixed stator shaft. The raceway of the axial bearing runs a-
long this stator shaft. The other raceway is implemented with a running 
disc. The spacer also belongs to the axial bearing, in order to equalize any 
occurring axial play in the transmission. 

The particular damage case, that is, the observed failure mode, is the in-
terchange between the running disc and the spacer. The “interchange of 
components” is a standard failure mode included in every simple checklist.  
In the case of an automatic transmission the interchanging can lead to the 
destruction of the bearing and thus, to transmission breakdown. Further, a 
function test in the factory was completed without results reason to objec-
tion. The function test was carried out with a relatively small load, which 
the 0.1 mm wide and untempered spacer is able to endure. The spacer only 
undergoes a strong deformation under higher loads and longer running 
periods, thus blocking the axial bearing and the entire transmission. Thus, 
a relatively minimal cause can bring forth severe damage. 
 

external disc carrier
stator shaft

running disc
space

axial bearing

 
Figure 4.16. Detail of a 5-gear automatic transmission 
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With the FMEA the failure would be analyzed as follows. The occur-
rence probability of the failure would receive a 3 to a 6 (manual assembly, 
conceivable failure). The severity of the potential effects is rated as very 
critical with a value of 9 to 10, since it would mean that the vehicle comes 
to a standstill. The detection of the potential cause is very improbable and 
thus is assigned the value of 10. Out of the product of the three individual 
values a risk priority number is produced between 300 and 600. These 
values require optimization see Figure 4.17. 
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4.4 FMEA according to VDA 4.2 

In the following section the procedure for an FMEA will be dealt with 
according to the VDA Guidelines 4.2 [4.7]. 

The previously existing FMEA has been considerably enhanced. The 
reason for this was the increased application of the FMEA and the aware-
ness of a few deficiencies in the existing procedure. A new, superior term 
is defined as: 

System FMEA. 

Considerable influential factors for the increased application of FMEA 
are: 

 
• increasing quality demands from customers, 

• cost optimization for products and 

• compulsory liability required of the producer  
 
The aims pursued by the system FMEA are: 
 

• increase in the function security and reliability of products,  

• reduction in guarantee and warranty costs, 

• shorter development processes, 

• new production start ups with fewer disturbances, 

• improved fulfilment of deadlines, 

• economical manufacturing, 

• improved services and 

• improved internal communication. 
 
Because the System FMEA is a preventive reliability method, the deci-

sion to implement the method should be made as early as possible in the 
product design cycle. If the application of the FMEA methodology can not 
be applied in the technical specification phase, then it should be executed 
at the latest in the development of the first design; or afterwards, a System 
FMEA should be executed. The execution of an FMEA accompanies the 
design cycle, which means that it must be continually conformed to the 
design process and may not be treated as a static document. 
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The following reasons led to the further enhancement of FMEA.   
 

• In the Design FMEA a failure analysis is mainly carried out on the com-
ponent level, which means that functional interactions between the ob-
served components are not included. 
 

• In the existing Process FMEA the failure analysis is carried out for indi-
vidual process steps. The entire production process is not thoroughly 
analyzed, for example the layout of necessary tools and machines is not 
considered. 

• The Design and Process FMEA involve the creation of the FMEA with 
the help of a form sheet, which means that no structured description is 
made of the function relationships as well as possible failure function 
relationships within the systems. 
 
The new approach involves using the structure of the system to be ana-

lyzed as a starting point for a System FMEA. This led to the development 
of a System FMEA Product and a System FMEA Process. The old form 
sheet of the VDA 86 was improved and a new form sheet VDA 4.2 in 
1996 was introduced, see Figure 4.18. 

 
F M E A
System

Number: 1
Page:

Type/Model/Fabrication/Load:
System Structure

Item Code:
State:

Responsible:
Company:

Created: 15.12.2004

FMEA/System Element:
System Element

Item Code:
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Responsible:
Company:

Created: 15.12.2004
Modified:15.12.2004

Funct-
ion

Potential
Failure 
Modes

Potential
Effects

Potential
Causes

Current state

Current
Controls

O S D RPN
Recom-
mended
Actions

Respon-
sibility

Target
Comple-
tion Date

Action Results
Actions
Taen

O S D RPN

System Element: System Element
System
Element

VDA 86

VDA 4.2

F M E A
System

Number: 1
Page:

Type/Model/Fabrication/Load:
System Structure

Item Code:
State:

Responsible:
Company:

Created: 15.12.2004

FMEA/System Element:
System Element

Item Code:
State:

Responsible:
Company:

Created: 15.12.2004
Modified:17.12.2004

Potential Effects S Potential Failure ModesPotential Causes Preventive 
Actions O Detection 

Actions
D RPNResponsibility

Compl. Date
System Element: spacer
Function: adjust axial play

Initial State: 15.12.2004

State: 15.12.2004
 Responsible?

Date?  
Figure 4.18. Comparison of the FMEA form sheets VDA 86 and VDA 4.2  
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Additional system and function observations are necessary for the new 
procedure. This means in detail: 

• to structure the product to be analyzed as a system with system elements 
and to identify the functional relationships between these elements, 

• to derive the conceivable failure functions (possible failures) of a system 
element and its described functions and  

• to derive the logical connections between the failure functions of differ-
ent system elements belonging together, in order to be able to describe 
the potential effects, failure modes and causes in the System FMEA, 
which could possibly be analyzed. 

It would now be helpful to take a closer look at the definition of the 
term “system”: Each technical entity (equipment, machine, device, assem-
bly, etc.) can be described as a system. A system 

• excludes itself from its surroundings; thus, it possesses a system bound-
ary; the interfaces with the system boundaries are input and output vari-
ables; 

• can be divided into either partial systems or system elements; 

• can be broken down into various hierarchical levels; 

• can be divided into different types of systems depending on the purpose 
of the analysis (e.g. in assembly, in function groups, etc.), 

• is an abstract product description. 
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System “clutch” a...h System elements (examples); i...l connection
elements; S entire system; S1 subsystem “elastic connection”; S2
subsystem “separating clutch”; I Inputs; O Outputs.

a
b

c d
e

g h

f

i

kl S1 S2I

E

O

S
system boundaries

 
Figure 4.19. “Clutch” system according to [4.6] 

A clarification of the term “system” is shown in Figure 4.19. Here, a 
sectional view is transferred into a system view and thus, into another ab-
stract level, which is profitable for the FMEA methodology. 

The second important term related to the System FMEA is “function”. 
A function describes the general and specific connection between input 
and output variables for technical entities, systems, etc. The image of a 
“black box” allows for the task description of abstract and neutral solution 
levels, see Figure 4.20. 

 

Input Output

Function
Idea: “Black Box“

 
Figure 4.20. Definition of the term “function”  
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Examples of functions in technical systems: 

• transmission      to convert torque / speed; 
• electric engine     to convert electrical energy into 

      mechanical energy; 
• pressure relief valve     to limit pressure; 
• RAM (Read Access Memory)   to save signals; 
 

Transform
energy into
load and
distance

measure
stress

measure
strain

load test
sampletest sample test sampledeformation

Edeformation

Examine test item 
for stress and strain

relationship

Eload

S
Sforce
Sdeformation

Edeformation

test sample test sampledeformation

SF

S∆l

Eload

S

System

Functions   
(top,     
main & 
auxiliary
functions)

 
Figure 4.21. Main function of a testing machine, approximate structure 
[4.6] 

 
In Figure 4.21 the procedure is elaborated by examining a testing ma-

chine. The complete system is divided step-by-step. In the first step the 
complete function is divided into main and auxiliary functions.  

In the next step a detailed structure with further main and auxiliary func-
tions is created, see Figure 4.22. 
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Figure 4.22.  Main function of a testing machine, fine structure [4.6] 

System FMEA Product (overview) 
Failure functions as well as failure modes for products (machines, de-

vices, apparatus, etc.) are analyzed in the System FMEA Product. The 
analysis is carried out in various hierarchical system levels all the way to 
the failure on the component level. 
  

The failure functions of a component are defined as physical failure 
modes such as fracture, wearout, jams, clamps, etc.  

 
The term “failure function” in general stands for a failure mode, failure 

type or a failure. The contents of the FMEA according to VDA Guidelines 
86 can be fully integrated in the new FMEA form for VDA 4.2, see Figure 
4.23. Figure 4.24 shows an example of the layout of a system structure for 
a System FMEA Product. 
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Figure 4.23. Design FMEA for a transmission according to the previous 
procedure (VDA 86) 

 

vehicle

drive train

structure

clutch

transmission

motor

chassis

body

gear

input shaft

 
Figure 4.24. System structure of a “Complete Vehicle System” [4.7] 

System FMEA Process (overview) 
With the System FMEA Process all possible failure functions of a pro-

duction process (manufacturing, assembly, logic, transportation, etc.) are 
observed. The process is structured according to a system description, 
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where the last structure level is composed of the “4M’s” (man, machine, 
material, method) and “environment”, see Figure 4.25. 

 

complete 
process
(vehicle)

process 2 
(drive train)

process 1 
(structure)

sub process 2.3

sub process 2.2

sub process 2.1

sub process 1.2

sub process 1.1

machine

man

material

method

environment  
Figure 4.25. Example of a system structure for a complete process [4.7] 

The procedure for the creation of a System FMEA according to VDA 4.2 
is made up of 5 main steps, see Figure 4.26. These 5 steps will be dealt 
with in detail in the following sections. 
 

1st step

System Elements 
and 

System Structure

2nd step

Functions
and 

Function
Sturcture

3rd step

Failure
Analysis

4th step

Risk
Assessment

5th step

Optimization

 
Figure 4.26. The 5 steps of the System FMEA 

4.4.1 Step 1: System Elements and System Structure  

The first step of an FMEA is divided into the following partial stages: 

1. Definition of the system to be analyzed, see Figure 4.27. First, it must 
be established, how complex the system is, which should be analyzed 
with the help of an FMEA. This includes: 

• the definition of interfaces to the design (for System FMEA Prod-
uct) or  

• the definition of the process interfaces (for System FMEA Proc-
ess). 
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Figure 4.27. Limiting the system to be observed 

2. Dividing the system into its individual system elements (SE); this parti-
tion can be carried out in:  

• assembly (subsystems) 
• function groups (subsystems) 
• components 

3. Ordering the system elements hierarchically in a system element struc-
ture (structure tree), see Figure 4.28. 

 

system

SE 1 

SE 2.3

SE 2.2

SE 2.1

SE 1.2

SE 1.1

SE 2.2.2

SE 2.2.1SE 2 

SE 3 

SE 3.2

SE 3.1

 
Figure 4.28. System and System Structure [4.7] 

The system structure arranges the individual system elements into vari-
ous hierarchical levels, beginning with the top element. Further subsystems 
can be arranged after each system element with a varying amount of levels. 
In principle, the way the system structure is set up is arbitrary. For the 



www.manaraa.com

122      4 FMEA – Failure Mode and Effects Analysis 

 

FMEA product an arrangement according to assembly is common, which 
can be seen for example in Figure 4.29. 

 When creating a system structure, the following points should be taken 
into consideration: 
• the number of hierarchical levels is arbitrary, 
• each system element may appear only once (uniqueness), 
• for a better overview individual system elements may be used simply 

for the matter of structuring (so-called “dummy system elements”); 
these elements are not significant for the analysis later. 

A few helpful resource tools for creating the system structure are shown 
in Figure 4.30. An example can be found in Section 4.5.1. 
 

Define product sturcture and system elements

+

Division of the system into:
–subsystems
–components

1.2 subsystem 2

1.3 subsystem 3

1.4 subsystem 4

...........

n-1 subsysem n-1

n   subsystem n

1.4.2 component 2
1.4.3 component 3
1.4.4 component n-1

1.4.5 component n

1. Creating a Structure
Definition of the system to be
analyzed / Division of systems
into assembly groups

2. Functions 5. Optimzation

1 complete system

complete product     + assembly groups components

1.4.1 component 1

(additional
levels
possible)

1.1 subsystem 1

3. Failure 
Analysis

4. Risk
Assessment

 

Figure 4.29. Step 1 – Creation of the Structure 
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Design:          - drawings
- parts lists
- design engineer

Process: - process schedule
- process management
- production
- quality management

5x nuts
1x rivet
2x door
4x wheel

 

 
Figure 4.30. Helpful resources for creating a system structure 

4.4.2 Step 2: Functions and Function Structure  

 The arrangement of the system elements (SE) and the set up of the sys-
tem structure (structure tree) are the basis for determining the particular 
functions and failure functions. 
 The following possibilities can be used for determining the functions: 
1. Creation of the functions in “top down” form, that is, the functions 

(functions contributing to the subordinated system elements) are created 
by beginning with the top function of the system, see Figure 4.31. 

2. Creation of the individual functions for each system element. Here, a 
good know-how is required for the application conditions, e.g. with 
specification information such as load, hotness, coldness, dust, spray 
water, salt, ice, vibration, electrical malfunction, etc. 
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system

function 1

assembly group 3

assembly group 2

assembly group 1 individual part 2

individual part 1

function 2

function 3 

individual part 3

functions of the system = top function
functions of the function groups

functions of the assembly groups
functions of the constructional elements

The fulfilment of the top functions leads to the functions in 
the various hierarchical levels  

Figure 4.31. Function analysis in FMEA 

Suitable helpful resource tools for both cases are:  
• the “black box” observation, see Figure 4.32, 
• the general “guidelines” from the design methodology, see Figure 4.33.  

A guideline is a search or suggestion list with higher ranking terms. It 
makes sure that nothing important is forgotten. Thus, it is ensured that 
the derived functions are complete. 

 
Black Box

Input Output

speed
hydraulics
pressure
signals

transformed speed
transformed torque

another gear

signal
electricity

light

specification of
the top function 

fulfils the top
function

functions

transmission

display

general

- transform torque 
  and speed
- change gears
- choose gear

- link signals
- produce light

special functions
 

Figure 4.32. Black Box as a helpful resource for the determination of 
functions 
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Geometry dimensions, height, width, length, diameter, required space, quantity, alignment, 
connection, extensions and expansion
extension and expansion
movement type, movement direction, speed, acceleration, size of force, 
direction of force, frequency of force, weight, load, strain, stiffness, spring 
spring characteristics, stability, resonances
power, degree of efficiency, loss, friction, ventilation, state variables e.g. pressure, 
temperature, humidity, heating, cooling, connection energy, storage, work intake,
transformation of energy
physical and chemical characteristics of the input and output product, auxiliary
materials, required materials (law of nourishment), material flow and transportation 
input and output signals, display mode, operation and monitoring equipment, type of  
signal
direct safety technology, protective systems operation, work and environment safety 
Man-Machine relationship, operation, type of operation, lucidity, lighting, design
confinement through production plants, largest producible dimensions, preferred 
production 
process, workshop facilities, possible quality and tolerances
measuring and control options, specific regulations (TÜV, ASME, DIN, ISO)
specific assembly regulations, assembly, installation, construction site assembly, 
foundation
limitation through lifting gear, path profile, route of transport according to size and 
weight, type of dispatch
low noise level, wear rate, application / distribution area, place of installation (tropics, ..)
maintenance-free and/or amount and time required for maintenance, inspection, 
replacement and repair, painting, cleaning
reuse, recycle, waste management, waste disposal, disposal
max. allowable production costs, tool costs, investment and amortization
end of development, network plan for intermediate steps, time of delivery

Kinematics
Forces

Energy

Material

Signal

Safety
Ergonomics
Manufacturing

Control

Assembly

Transportation

Usage
Maintenance

Recycling
Costs
Schedule

main categories

according to Pahl/Beitz  
Figure 4.33. Guidelines for specification lists according to [4.6] 

The function structure refers to the cooperation of functions from several 
system elements for one individual, waning function. The combination of 
the functions to a function network or function structure is possible. Top 
functions are determined for the complete system function, which are es-
sential for the fulfilment of the product goals, such as quality characteris-
tics, design specifications or information from previous FMEA’s. The top 
function is divided into partial system functions and subsystem functions 
all the way to the component functions, see Figure 4.34.  An example is 
given in Section 4.5.2 
 



www.manaraa.com

126      4 FMEA – Failure Mode and Effects Analysis 

 

2. Functions 5. Optimzation1. Creating a
structure

functions for the system elements
+ +

(Product goals:
- quality features 
- product specifications
- FMEA specifications

1

1.1 partial system 1
…
1.2 partial system 2
…

1.3 partial system 3

1.4
…

subsystem
...

complete system functions partial system functions subsystem functions

complete system
top function 1
top function 2
top function 3
…
top function n

partial system function 1
partial system function 2

sub function 1
…
sub function n-1
sub function n

3. Failure
Analysis

4. Risk
Assessment

 
Figure 4.34. Functions of the system elements 

4.4.3 Step 3: Failure Analysis 

A failure analysis is carried out for each system element. However, for 
each individual case it must be decided for which system elements it is 
reasonable to carry out a failure analysis. Failure analysis means the de-
termination of all potential failure functions. This means that the failure 
that leads to an unfulfilment or a limitation of a function is considered. 

For abstract functions a failure function list can be created on behalf of 
the possibilities shown in Figure 4.35. 

 
Creation of failure

function lists
often just a negation

of the function

several failure functions
for one function

consider all operating
conditions  

Figure 4.35. Determination of failure functions 
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The failure functions on the component level are physical failure modes. 

Table 4.1. Typical potential failure modes 
 
• fracture  
• crack 
• abrasion  
• rejected  
• chips away 
• wear (also bedding-in, pittings,...) 
• insufficient time characteristics  
• rotted, decomposed (prematurely) 
•  damaged, prematurely worn out 
•  vibrates  
•  swings 
•  resonances  
•  unpleasant sound 
•  too loud 
•  congested 
•  contaminated  
•  leaky  
•  busted  
•  depressurized  
•  false pressure 
•  corroded 
•  overheated  
•  burnt  
•  charred 

 
• blocked  
• overstretched  
• bent, sagging 
• distorted, deformed, dented 
• relaxed, loose, wobbles 
• clamps, sluggish 
• friction is too high of too low 
• too much expanded 
• part is missing 
• wrong part (not a safely usable 

constr.) 
• wrong position (no constr. meas-

urement) 
• constr. inverted assembly possible 
• interchanged (no constr. measure-

ment) 
• location to reverse side is false 
• false configuration 
• entry of dirt and water  
• false speed  
• false acceleration  
• false spring characteristics  
• false weight  
• poor degree of efficiency  
• too maintenance intensive  
• poorly replaceable  
• not further useable  

 
Table 4.1 is a list of typical failure modes which can be used to ensure 

the integrity of the fault analysis. These failure functions are classic failure 
modes for FMEA on the component level. 

Failure functions in a structure tree are shown in Figure 4.36. 
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1. Strukturerstellung 2. Funktionen

1.3 parital system 3
partial system function 1

partial system function ...

1.3.1 Subsystem
Sub function 1

Sub function 2

sub function 3

sub function n-1
sub function n

potential failure effects

.....

partial system failure 
not fulfilled
partial system failure 
partly fulfilled

potential failure causes

sub system failure 2

sub function not fulfilled
sub function partly fulfilled

partial system failure 1 
sub system failure 1

1. Strukturerstellung 2. Funktionen

.....

determine failure functions for the system elements

5. Optimization1. Creating a
structure 2. Functions

1 complete system 
top function 1
top system failure 1

top function 2
top system failure 2
…
top function n
top system failure n

1.1 partial system 1

1.2 parital system 2

1.4

+

.....

potential failure modes

.....

.....

complete system functions partial system functions subsystems functions

F(FM) FCFE

3. Failure
Analysis

4. Risk
Assessment

+

 
Figure 4.36. Failure functions (FE, FM, FC) 

The top system failures or the top failure functions are derived from the 
top functions. The depth of the failure analysis is limited by the depth of 
the structuring levels of the system structure. If necessary, the system 
structure can be expanded for the determination of potential failure causes.  
The determination of the potential failure modes (FM) can be supported by 
the following methods: 

• damage statistics, 
• experience of the FMEA team members, 
• check lists (e.g. failure modes from Table 4.1) 
• creativity procedures (Brainstorming, 635, Delphi, etc.) 
• systematically with the functions or failures functions / fault trees. 

Check lists have proven to be very helpful in searching for failures.  
 

The following relationships arise from the failure analysis in Step 3: 
 

• Potential failure modes (FM) for the observed SE are failure functions  
   derived from and described by the determined functions, e.g. failure fails  
   to fulfil the function or limited function. 



www.manaraa.com

4.4 FMEA according to VDA 4.2      129 

 

• The potential failure causes (FC) are the conceivable failure functions of 
   the subordinated SE’s in the system structure and the SE’s assigned 
   by the interfaces. 
• The potential failure effects (FE) are the failure functions for the higher  
   ranking SE’s in the system structure and the SE’s assigned by the inter- 
   faces. 
 

The relationship between the different failures should be more closely 
observed on behalf of the following example. 
 
•  potential failure mode: sudden pressure loss in a car tire 
•  potential failure cause: sharp object (e.g. a nail) on the street 
• potential failure effect: vehicle loses control - accident, vehicle is 
    incapable of driving 
 

Table 4.2 shows some typical potential failure causes (FC) on the com-
ponent level. Often, it is reasonable to create company specific lists to be 
used again in future FMEA’s. 

Table 4.2. Typical potential failure causes on the component level 

•         dimensioning failure (geometry,
    stability, stiffness, ...) 

•          false tolerance choice (tolerance  
  

•          false material (material characteris-
 tics: magnetic, inhomogeneous,…) 

•           tolerance chains were not considered  

•          surface is falsely defined (hard-
 ness, form, waviness, true-running,  
 surface roughness,…) 

•           confusingly constructed 

•          false machining process defined •           false heat treatment defined 

 
The execution of the failure analysis can be carried out in various man-

ners: 
1. Definition of the function all the way to the component level, from the  

component functions: → component failure functions = failure modes; 
Question: “Which failure modes are conceivable for the observed com- 
ponent function?” (sleeve example, Figure 4.55). 

field, form & position tolerance)

2. Definition of the functions all the way to the assembly or the function 
group levels (component function = “dummy” function); from the 
failure functions of the assembly and function groups: → component 
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The determined failure functions are joined together into failure trees / 

failure function trees or failure networks, see Figure 4.37. 
 

Topsystemfehler n-1
Topsystemfehler n

1.1
system 1

1.2
system 2

1.3
system 3
partial system function 1

partial system function ..

1.3.1

task 1
task 2

task 3
sub function 1

sub function n-1
sub function n1.4Failure Effects

partial system failure 1

partial system failure...

Failure Modes
Failure Causes

task not carried out
task partially carried out

sub function not fulfilled
sub function partially fulfilled

sub position

combine failure functions together in a failure
network / failure tree

5. Optimization1. Creating a
structure  2. Functions

Creating a

failure network/

failure tree partial system
failure 1 

top system
failure 1

subsystem failure 2

subsystem function 1
not fulfiled  

subsystem failure 1

subsystem function 2 
partly
fulfiled

1
complete system

top function 1

top function 2

top system failure 1
top system failure 2

3. Failure
Analysis

4. Risk
Assessment

 
Figure 4.37. Failure network 

Figure 4.38 shows another example of a failures networks for the frac-
ture of a sleeve. Here, the relationship between potential failure causes 
(FC), potential failure modes (FM or F) and potential failure effects (FE) is 
clarified. 
 

breakage

wrong choice of material

unforeseen / unallowable
stress

 

false assembly
(reversed installed)

axial displacement of the
consturctional elements

 
Figure 4.38. Failure network for the fracture of a sleeve 

The failure function structure for a transmission is shown in Figure 4.39. 
In this example the System FMEA Product’s of the purchased items of 
supplies is also included. 
 

failure function = physical failure modes; Question: “Which failure 
modes are necessary to produces the observed assembly or func- 
tion group failure functions?” (seal example, Figure 4.55). 
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[transmission]
does not ensure
environmentally safe
and functional operation

[transmission housing]
seals the oil tank
from the surrounding environment

[transmission housing – bearing cover 
(on input side)]
does not hold shaft seal functionally or
without leakage

[ZB input shaft]
does not seal
opposite to the 
shaft seal functionally

[ZB input shaft]
does not seal opposite to shaft
seal without leakage

 

[shaft sealing ring (*)]
does not seal the oil tank from  the surrounding
environment either statically or dynamically

[race - shaft seal]
worn race

[race - shaft seal]
does not ensure the building up
of an oil film on the shaft seal
[connection (*)]
produces oscillation

[race - shaft seal]
transfers oil to the surrounding 
environment

...
...
...

...

...

...
...
...
......

...

...

...

...

...

(*) System FMEA Product (vendor parts)

...

...

 
Figure 4.39. “Transmission” failure function structure [4.7] 

Depending on the level chosen, the contents of the failure function 
structures are carried over into the FMEA form sheet according to VDA 
4.2 as  

• “potential failure effect” FE,  
• “potential failure mode” FM and  
• “potential failure cause” FC.  

The FMEA’s carried out on different levels overlap each other. The po-
tential failure mode of the upper level is carried over as the potential fail-
ure effect for the FMEA of the next lower level. A potential failure cause 
in an upper level can be carried over as a potential failure mode in the next 
lower level. The overlappings are shown in Figure 4.40 and Figure 4.41. 
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FE FC
does not ensure 
failure-free and 
economical
operation 
according  to the 
product specs 

does not ensure 
driving of the 
vehicle

drive line

AS input shaft

race - shaft seal

transmission

Design FMEA
(System FMEA on the 
level for constructional
components)

System FMEA
Product

system FMEA Process

FE
does not ensure 
driving of the 
vehicle

 

 

does not seal
opposite to the
shaft seal
functionally 

 

FCF

does not ensure
the building up
of an oil film on
the shaft seal

FE FC
 

 

 
 

FE FC
 

F

F
worn race

properties of the race - shaft seal
FE FCF

worn race alse dimensioning
of the diameter
false Rz
insufficient
hardness
grinding problem

does not ensure
environmentally
safe and 
functional
operation 

 

 

does not ensure
environmentally
safe and 
functional
   operation 

does not ensure
environmentally
safe and 
functional
operation 

does not seal
opposite to the
shaft seal
functionally 

does not seal
opposite to the
shaft seal
functionally 

does not ensure
the building up
of an oil film on
    the shaft seal

does not ensure
the building up
of an oil film on
the shaft seal

F

 
Figure 4.40. Overlapping according to [4.7]  
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FE F

FE

FC

FC

FE F FC

FFE FC

F

FE F FC

System FMEA Product, level 1

System FMEA Product, level 2

System FMEA Product, level 3
(Design FMEA)

System FMEA Process, level 1

System FMEA Process, level 2
(Process FMEA)

SE
overlappings between
product / process

FE: failure effect F: failures FC: failure cause  
Figure 4.41. Overlapping in System FMEA Product and Process according 
to [4.7]  

4.4.4 Step 4: Risk Assessment 

The risk assessment is carried out under three evaluation criteria. These 
are: 

• S: Severity of the potential failure effect 

• O: probability for the occurrence of the failure cause and 

• D: probability for the detection of the occurred failure cause. 

A representation of the risk analysis in a form sheet is shown in Figure 
4.42. 
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assessment of the
detection probability D
for the failure effects 

2. Functions

search for actions + assessment

formulation of preventive
actions

formulation of detection
actions

1. Creating a
strukture

3. Failure
Analysis

4. Risk
Assessment 5. Opimization

assessment of the
occurrence probability
O for the failure 
effects 

 
assessment of the
severity S for the
failure effects 

 Calculation 
of the RPN

F M E A
System

Number: 1.1
Page:

Type/Model/Fabrication/Load:
System Structure

Item Code:

State:

Responsible:

Company:

Created: 08.12.2004

FMEA/System Element:
Pre-assembly of spacer

Item Code:1.3
State:

Responsible:

Company:

Created: 08.12.2004
Modified: 15.12.2004

Potential Effects S Potential Failure Modes Potential Causes Preventive Actions O Detection Actions D RPN Responsibility/ Target
Completion Date

System Element: Pre-assembly of spacer
Function: Insert parts into spacer housing
[Drive adaption assembly]
scuffing of gears / automobile 
does not drive

8 part is falsley inserted / 
friction torque  is > 10 
Nm

wrong disk chosen 
[man]

wrong disk inserted 
[man]

2 discs in 1 differential 
bevel gear [man]

ball disc falsely inserted
in differential bevel gear 
[man]

[Drive adaption assembly]
loud whistling sounds

6 part is falsley inserted / 
friction torque is < 5 Nm

Function: Pin and screw in spacer housing
[Drive adaption assembly]
scuffing of gears / automobile 
does not drive

8 part is falsley inserted / 
friction torque  is > 10 
Nm

[Drive adaption assembly]
loud whistling sounds

6 part is falsley inserted / 
friction torque is < 5 Nm

Failure 
Effect

Failure 
Mode

Failure 
Cause

System
failure 1

Subsystem failure 2
Subsystem function1
not fulfiled

Subsystem failure 1

Subsystem function 2
partly fulfiled

Top 
system
failure 1

S

 
Figure 4.42. Risk assessment in a form sheet 

The evaluation values range from 1 to 10 in whole numbers. The tables 
from VDA, see Figure 4.43 or company specific tables can be used as a 
guideline for the evaluation. Company specific tables can be created with 
the help of previous FMEA’s. 

Severity S 
The evaluation value S evaluates the severity of the failure effect for the 

complete system. The assessment is always carried out from the standpoint 
of the final user of the product (external customer). A value of 1 stands for 
an extremely low severity; while a value of 10 stands for an extremely 
high severity (e.g. people are put into danger). Generally, similar potential 
failure effects should be assigned by similar values, see Figure 4.43. 
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assessment value for 
the severity S 

assessment value for the 
occurrence O 

dedicated 
fraction 
defective in 
ppm 
 

assessment value for the 
detection D 

reliability 
of testing 
procedure 
 

very high: very high: improbable / very low  
10 

9 
Significant failure 
that causes total 
inoperability of the 
system and 
possible malfunc-
tion of the safety 
mechanisms or 
non-fulfilment of 
legal requirements 

10 
9 

failure cause will 
occur very often, 
inoperative, 
unsuitable  
design principle 
 

500,000 
  100,000

10 
9

Detection of the 
occurred failure 
cause is 
improbable; 
reliability of the 
constructive 
dimensioning 
was not or can 
not be proven. 
Proof procedure 
is uncertain, no 
tests. 

90% 

high: high: low:  
8 
7 

Operability of the 
system is strongly 
limited, immediate 
maintenance is 
obligatory, 
limitation of 
functionality of 
important sub 
systems. Safety 
mechanisms of 
the system  
are not impaired. 

8 
7 

This design is 
only slightly 
different  
from earlier 
proven designs 
which  
caused prob-
lems.  Failure 
cause occurs 
repeatedly. 

  50,000 
  10,000

8
7

Detection of the 
occurred failure 
cause is not 
likely, there are 
probably failure 
causes that are 
not detected, 
uncertain 
testing. 

98% 

moderate: moderate: moderate:  
6 
5 
4 

Functionality of 
the system is 
limited is limited, 
immediate 
maintenance not 
necessarily 
required, limitation 
of functionality of 
important opera-
tion and comfort 
systems. Cus-
tomer notices the 
malfunctioning of 
the system. 

6 
5 
4 

Failure cause 
occurs from time 
to time, design 
less accurate.  

    5,000 
    1,000 
       500

6
5
4

Detection of the 
occurred failure 
cause is 
probable, 
testing is 
relatively certain 

99,7% 

low: low: probable:  
3 
2 

Low limitation of 
system functional-
ity, removal at the 
next regular 
maintenance, 
limitation of 
functionality of 
important opera-
tion and comfort 
systems 

3 
2 

Occurrence of 
the failure cause 
is low, design is 
correct 

       100 
         50

3
2

Detection of 
the occurred 
failure cause is 
very probable, 
testing is 
certain, e.g. 
several tests 
independent of 
one another. 

99,9% 

very low: very low: very probable:  
1 Very low limitation 

of functionality, 
can only be 
discovered by 
expert staff. 
Customer is not 
likely to notice 
failure. 

1 It is improbable 
for this failure to 
occur. 

           1 1 Occurred 
failure cause 
will assuredly 
be detected. 

99,99% 

Figure 4.43. Criteria for the assessment values for the System FMEA 
Product according to [4.7] 
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Preventive Actions and Occurrence O 
The assessment of the occurrence O is carried out according to the effi-

ciency of the preventive actions taken for the respective potential failure 
causes. The more detailed the failure analysis is carried out in the System 
FMEA for the failure causes, the more differentiated the O assessment can 
be conducted. In a System FMEA for higher ranking systems values based 
on previous experience can be helpful for the O assessment of failure 
causes (e.g. reliability rates). 

If familiar subsystems are integrated into another system, the assessment 
values should be re-evaluated due to the altered application conditions.   

Preventive actions are all actions (most of the time preventive), which 
confine or avoid the occurrence of a potential failure cause.  Such an ac-
tion could be for example, calculations during the development phase, see 
Figure 4.44. 

 
F M E A

System

Number: 1.1
Page:

Type/Model/Fabrication/Load:
System Structure

Item Code:

State:

Responsible:

Company:

Created: 08.12.2004

FMEA/System Element:
Pre-assembly of spacer

Item Code:1.3
State:

Responsible:

Company:

Created: 08.12.2004
Modified: 15.12.2004

Potential Effects S Potential Failure Modes Potential Causes Preventive Actions O Detection Actions D RPN Responsibility/ Target
Completion Date

System Element: Pre-assembly of spacer
Function: Insert parts into spacer housing
[Drive adaption assembly]
scuffing of gears / automobile 
does not drive

8 part is falsley inserted / 
friction torque  is > 10 
Nm

wrong disk chosen 
[man]

wrong disk inserted 
[man]

2 discs in 1 differential 
bevel gear [man]

ball disc falsely inserted
in differential bevel gear 
[man]

[Drive adaption assembly]
loud whistling sounds

6 part is falsley inserted / 
friction torque is < 5 Nm

Function: Pin and screw in spacer housing
[Drive adaption assembly]
scuffing of gears / automobile 
does not drive

8 part is falsley inserted / 
friction torque  is > 10 
Nm

[Drive adaption assembly]
loud whistling sounds

6 part is falsley inserted / 
friction torque is < 5 Nm

Formulation of Prevention Actions
are actions, which reduce the occurrence of failure causes

A few examples:

system specific: redundancies (influence the meaning grade)
experience with comparable systems

constructive: principle experiments, simulations, calculations,
matured construction, qualified. choice of materials, use of specs

production specific: process regulations, testing regulations, etc.
 

Figure 4.44. Preventive actions 

The assessment of the probability for the occurrence of a potential failure 
cause is carried out under consideration of all listed preventive actions, see 
Figure 4.44. A value of 10 is assigned, if it is likely that the potential fail-
ure cause will occur. A value of 1 is assigned for a very improbable poten-
tial failure cause. Thus, the O assessment makes a statement concerning 
the quantity of defective components remaining in an entire batch of a 
certain product.   



www.manaraa.com

4.4 FMEA according to VDA 4.2      137 

 

Detection Actions and Detection D 
The assessment of the detection D is carried out according to the effi-

ciency of the detection actions taken for the respective potential failure 
causes. The more detailed the failure analysis is carried out in the System 
FMEA for the failure causes, the more differentiated the D assessment can 
be conducted. In a System FMEA for higher ranking systems values based 
on previous experience can be helpful for the D assessment of failure 
causes. 

If familiar subsystems are integrated into another system, the assessment 
values should be re-evaluated due to the altered application conditions.   

For the detection actions one differentiates between two separate cases: 

1. Detection actions in development and production:  
detection actions that are carried out during the development and pro-
duction phases and allow for the visualization of possible potential fail-
ure causes in a concept or product already during development and pro-
duction. 

2. Detection action in operation / in the field:  
detection possibilities that the product (system) shows during its opera-
tion or that are recognized by the operator (customer). These detection 
actions indicate potential failures or potential failure causes that have 
occurred during operation and should prevent any further potential fail-
ure effects. 

 
F M E A
System

Number: 1.1
Page:

Type/Model/Fabrication/Load:
System Structure

Item Code:

State:

Responsible:

Company:

Created: 08.12.2004

FMEA/System Element:
Pre-assembly of spacer

Item Code:1.3
State:

Responsible:

Company:

Created: 08.12.2004
Modified: 15.12.2004

Potential Effects S Potential Failure Modes Potential Causes Preventive Actions O Detection Actions D RPN Responsibility/ Target
Completion Date

System Element: Pre-assembly of spacer
Function: Insert parts into spacer housing
[Drive adaption assembly]
scuffing of gears / automobile 
does not drive

8 part is falsley inserted / 
friction torque  is > 10 
Nm

wrong disk chosen 
[man]

wrong disk inserted 
[man]

2 discs in 1 differential 
bevel gear [man]

ball disc falsely inserted
in differential bevel gear 
[man]

[Drive adaption assembly]
loud whistling sounds

6 part is falsley inserted / 
friction torque is < 5 Nm

Function: Pin and screw in spacer housing
[Drive adaption assembly]
scuffing of gears / automobile 
does not drive

8 part is falsley inserted / 
friction torque  is > 10 
Nm

[Drive adaption assembly]
loud whistling sounds

6 part is falsley inserted / 
friction torque is < 5 Nm

Formulation of Detection Actions 
are actions used to detect a failure, 
before the part reaches the customer (processor).

It is assumed that the failure cause has occurred and all testing actions for the
detection of the failure are listed. 

A few examples:

Endurance testing (engine test branch), drawing examination, laboratory tests,
test drive, ect. 

 
Figure 4.45. Detection actions 
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The assessment of the probability for detection is carried out under con-
sideration of all detection actions listed. Detection actions that do not di-
rectly identify the potential failure cause but rather the resulting potential 
failure cause are taken into consideration, see Figure 4.45. A value of 10 is 
assigned, if no detection actions are mentioned whatsoever. A value of 1 is 
assigned, if the probability for the detection of the failure before the deliv-
ery to the customer is very high. Thus, the D assessment makes a statement 
concerning the quantity of undetected, defect components in an entire 
batch of a certain product.   

Risk Priority Number RPN  
The risk priority number RPN is calculated by multiplying the assess-

ment values together, see Figure 4.46. The risk priority number represents 
the entire risk for the system user and serves as a decision criteria for the 
introduction of optimization actions. 

 
F M E A

System

Number: 1.1
Page:

Type/Model/Fabrication/Load:
System Structure

Item Code:
State:

Responsible:
Company:

Created: 08.12.2004

FMEA/System Element:
Pre-assembly of spacer

Item Code:1.3
State:

Responsible:
Company:

Created: 08.12.2004
Modified: 15.12.2004

Potential Effects S Potential Failure 
Modes

Potential 
Causes

Preventive 
Actions

O Detection 
Actions

D RPN Responsibility
Date

System Element: Pre-assembly of spacer
Function: Insert parts into spacer housing
[Drive adaption 
assembly]
scuffing of gears / 
automobile
does not drive 

8 part is falsley 
inserted / 
friction torque 
is > 10 Nm 

wrong disk chosen  

wrong disk inserted  

2 discs in 1 differe-
ntial bevel gear 
ball disc falsely 
inserted in differe-
ntial bevel gear 

[Drive adaption 
assembly]
loud whistling 
sounds

6 part is falsley 
inserted /
friction torque 
is < 5 Nm 

Function: Pin and screw in spacer housing
[Drive adaption 
assembly]
scuffing of gears / 
automobiledoes 
not drive 

8 part is falsley 
inserted / 
friction torque 
is > 10 Nm  

S  x  O  x  D  =  RPN
1...10 1...10 1...10 1...1000

 
Figure 4.46. Calculation of the Risk Priority Number RPN 
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As a matter of principle: 
• The larger the RPN is, the greater the priority that the risk is lowered 

with the help of design and quality assuring actions, see Figure 4.47; 
• Likewise, individual values for S, O, and D that are greater than 8 

should be more closely observed; 
• The product O · D gives information concerning the remaining probabil-

ity that defect, undetected parts will reach the hands of the customer. 
 

The risk assessment is conducted for actions, which have already been 
implemented. In order to lower the risk even more, additional actions are 
mostly required. 
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Figure 4.47. Risk assessment: RPN distribution 

Analysis of the Risk Priority Numbers  
The observation of the absolute value of the risk priority number (the 

product S · O · D) is not always sufficient in many cases to find the starting 
points for optimization actions. Likewise, it is not reasonable to define a 
“fixed RPN” as a companywide action limit (e.g. optimization conducted 
for all RPN ≥ 250), since the circumstances of the assessment standards 
may differ for each FMEA and the observation of smaller risk priority 
numbers could be neglected. The following example illustrates the situa-
tion and shows that by all means, the observation of smaller RPN’s can 
prove to be a reasonable approach. 
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Table 4.3. Assessment examples 

Example S value O value D value RPN 
1 10 2 10 200 
2 5 10 2 100 
3 3 10 5 150 
4 1 1 1 1 

By analyzing the factors individually, the following results are yielded: 

Example 1: An isolated potential failure cause, which has occurred, will 
in no way be detected after its occurrence and leads to ex-
tremely severe failure effects in the hands of the customer. 
Here, there is a need for a call for action, despite the relatively 
low absolute value for the risk priority number.   

Example 2: A potential failure cause occurring very often leads to a rela-
tively severe failure effect from the customer’s point of view. 
The occurred failure cause is not always discovered and thus, 
reaches the hands of the customer from time to time. Here, it 
is appropriate to introduce failure preventive actions, and 
when appropriate, these preventive actions can replace the 
suggested detection actions.  

Example 3: A potential failure cause, which occurs very often, is often not 
detected and leads to a relatively insignificant failure in the 
hands of the customer. However, such a condition can often 
lead to customer claims and should be improved with appro-
priate optimization actions. 

Example 4: A highly improbable potential failure cause, would lead to an 
insignificant failure effect in the hands of the customer, if it 
were to occur. However, this could be easily prevented with 
effective detection actions. In the case of such an assessment, 
it is reasonable to verify the planned detection actions, and if 
necessary to reduce them if they are too expensive. 

The (fictitious) examples mentioned above show that a “top down” 
analysis of the RPN’s is reasonable, no matter what the absolute value of 
an RPN may be. At a closer look even very low risk priority numbers 
could offer starting points for concept optimization.  

4.4.5 Step 5: Optimization 

Optimization actions are to be taken for high RPN’s and high individual 
assessment values. Firstly, the calculated risk priority numbers are ranked 
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according to their values, see Figure 4.48. The optimization begins with 
the failure cause with the greatest RPN and should be ended either at a 
certain lower limit (e.g. RPN = 125) or according to the Pareto principle, 
after 20 – 30 % of the RPN’s, depending on the scope of the analysis.  
High individual assessment values must also be observed along with the 
RPN. A value of O > 8 means that a failure occurs most of the time.  Natu-
rally, this must be remedied. A severity value of S > 8 points to serious 
function impairment or to a serious safety risk. These cases must also be 
looked at more closely. Failures can be very difficulty detected for values 
of D > 8. For this reason the danger is increased that these can reach the 
hands of the customer. 

 

• Ranking of failure causes according to their RPN values 

• Concept Optimization beginning with the failure causes with the 
greatest RPN 
   ○  until a set RPN limit  
       (e.g. RPN = 125) or  
   ○  until a certain amount of failure causes  
       (common according to the Pareto principle ca. 20 -
        30 %) 

• Failure causes with O > 8  
     S > 8  
     D > 8 observed separately 

• FMEA result observed separately 

Figure 4.48. Concept optimization procedure  

Optimization actions are additional or new preventive and/or detection 
actions introduced based on the FMEA results.   

These can be: 

• actions that prevent the potential failure cause or reduce the occurrence 
of potential failures.  Such actions are only possible by altering the de-
sign or the process. 

• actions, which reduce the severity of a failure.  This is attainable 
through conceptual alterations on the product (e.g. redundancy, error 
signals, etc.). 

• actions taken to raise the probability of detection.  Such actions could be 
changes in the testing procedures and/or in the design and/or in the proc-
ess. 
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Optimization actions should be ranked according to following priority: 

1. Change of concept, 
in order to eliminate the potential failure cause or to reduce the severity, 

2. Increase in the concept reliability 
in order to minimize the occurrence of a failure cause. 

3. Effective detection actions. 
Such actions should make up the last means of optimization, since they 
are generally very expensive and offer no improvement in the quality. 

The optimization actions are entered into the form sheet in a revision 
state including the renewed assessment of O and D (so-called prognosis), 
responsibility (R) and deadline (D), see Figure 4.49 and Figure 4.50.  For a 
change of concept, all 5 steps of the FMEA must be possibly repeated after 
the optimization, see Figure 4.50. 

 
Suggestions for optimized actions taken

• (P)reventive

• (E)ffect limited

• (D)etective

Determining who is responsible

setting deadlines

Assessment of the newly introduced actions to be taken

• Severity “S”

• Occurrence “O”

• Detection “D ”
 

Figure 4.49. Risk minimization 
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Establishing the optimized
preventive actions 

Calculation of the optimized
RPN

Establishing the optimized
detection actions 

5. Optimization1. Creating a
structure 2. Functions 3. Failure

Analysis
 4. Risk

Assessment 

F M E A
System

Number: 1.1
Page:

Type/Model/Fabrication/Load:
System Structure

Item Code:

State:

Responsible:

Company:

Created: 08.12.2004

FMEA/System Element:
Pre-assembly of spacer

Item Code:1.3
State:

Responsible:

Company:

Created: 08.12.2004
Modified: 15.12.2004

Potential Effects S Potential Failure Modes Potential Causes Preventive Actions O Detection Actions D RPN Responsibility/ Target
Completion Date

System Element: Pre-assembly of spacer
Function: Insert parts into spacer housing
[Drive adaption assembly]
scuffing of gears / automobile 
does not drive

8 part is falsley inserted / 
friction torque  is > 10 
Nm

wrong disk chosen 
[man]

wrong disk inserted 
[man]

2 discs in 1 differential 
bevel gear [man]

ball disc falsely inserted
in differential bevel gear 
[man]

[Drive adaption assembly]
loud whistling sounds

6 part is falsley inserted / 
friction torque is < 5 Nm

Function: Pin and screw in spacer housing
[Drive adaption assembly]
scuffing of gears / automobile 
does not drive

8 part is falsley inserted / 
friction torque  is > 10 
Nm

[Drive adaption assembly]
loud whistling sounds

6 part is falsley inserted / 
friction torque is < 5 Nm  

Figure 4.50. Optimization 

After establishing the new preventive and/or detection actions, these ac-
tions are newly assessed. This assessment represents a prognosis concern-
ing the improvement potential to be expected. The final assessment is car-
ried out after the new actions are implemented and tested.   

A graph, such as the one shown in Figure 4.51, can be used to compare 
the initial and revision states by displaying both states together.   

 



www.manaraa.com

144      4 FMEA – Failure Mode and Effects Analysis 

 

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Risk Priority Number (RPN)

N
um

be
r o

f A
ss

es
sm

en
ts

Initial State
Last Revision State

50     150    250     350     450      550    650     750   850     950

 
Figure 4.51. Graph of initial and revision states 

4.5 Example of a System FMEA Product according to 
VDA 4.2  

Now, the product “adapting transmission” will be closely observed as an 
example in the following text. 

The pinion gear (component 1.2) sits on the input shaft (component 1.1). 
The power is transferred through the gear (component 2.2) onto the output 
shaft (component 2.1). The transmission consists of bearings for the shafts 
and gear housing with a housing cover and various small bearing covers 
that are sealed with either gaskets or radial seal rings. 

4.5.1 Step 1: System Elements and System Structure of the 
Adapting Transmission  

For the first step of creating a system structure it is reasonable to consult 
technical documents as well as section drawings inasmuch as they are 
available. These can be useful in the creation of a system structure. A con-
ventional section drawing and the transmission scheme is shown in Figure 
4.52. 
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1.2

1.4

1.1

1.6

1.7

3.3

2.1

3.4

3.12

3.13

3.10
3.11

3.15 3.14 3.9 1.5

3.7

1.3

3.5

3.6

2.5

2.6

2.4

2.3

2.2

3.23.13.8  

pinion

roller bearing A

roller bearing C

roller bearing B

roller bearing D

gearwheel

 
Figure 4.52. Section drawing and transmission scheme of the adapting 
transmission  
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The accompanying parts list is divided into three different assemblies, 
which are taken from the functionality of the adapting transmission, see 
Table 4.4. 

Table 4.4. Assembly and part lists of the adapting transmission 

Assembly  Component 
No. 

Quantity Component Designation 

 1.1   1 input shaft IS 
 1.2   1 Pinion gear P 

1 1.3   2 roll bearing RB1 
 1.4   1 radial seal ring RSR1 

Input 1.5   1 fitting key for pinion 
gear 

FK1 

 1.6   1 fitting key for con-
nection 

FK2 

 1.7   1 sleeve / spacer S1 
 2.1   1 output shaft OS 

2 2.2   1 gear G 
 2.3   2 roll bearing RB2 

Output 2.4   1 radial seal ring RSR2 
 2.5   1 fitting key FK3 
 2.6   1 sleeve / spacer S2 
 3.1   1 housing left HL 
 3.2   1 housing right HR 
 3.3   1 bearing cover BC1 
 3.4   1 bearing cover BC2 
 3.5   1 bearing cover BC3 

3 3.6   1 bearing cover BC4 
 3.7 16 bolt bearing cover  BB 

Housing 3.8   8 bolt housing BH 
 3.9   2 dowel pin DP 
 3.10   1 oil drain plug ODP 
 3.11   1 seal for 3.10 S1 
 3.12   1 sight glass SG 
 3.13   1 seal for 3.12 S2 
 3.14   1 exhauster E 
 3.15   1 seal for 3.14 S3 
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The resulting system structure for the adapting transmission is shown in 
Figure 4.53. 
 

transmission

drive

input shaft
pinion
roller bearing
radial shaft seal
fitting key for pinion
fitting key for clutch
sleeve failure causes

driven side

output shaft
gear
roller bearing

radial shaft seal
fitting key
sleeve

casing

casing left
casing right
static sealing failure causes
bearing cover 1
bearing cover 2  

Figure 4.53. System structure of the adapting transmission 
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4.5.2 Step 2: Functions and Function Structure of the 
Adapting Transmission 

The Black Box consideration and the guidelines for the specification lists 
according to [4.6] are used for the creation of the functions and function 
structure. Starting with the top element, the root element, the functions are 
determined for the individual assemblies and components. An extract of 
the resulting function structure of the “adapting transmission” is shown in 
Figure 4.54. 
 

transmission

drive

input shaft
function

pinion
function

roller bearing
function

radial shaft seal
function

fitting key for pinion
function

fitting key for clutch
function

sleeve failure causes
function

driven side

output shaft
function

gear
function

roller bearing
function

radial shaft seal
function

fitting key
function

sleeve
function

casing

casing left
function

casing right
function

static sealing failure causes
function

bearing cover 1
function

bearing cover 2
function

sealing device

axial friction

- ensure
sealing - ...

- transmit
torque on
driven side 

- ransmit
  torque
  drive 

- t ransmit
 torque 
-ensure
 environmental
 compatibility

 

 
Figure 4.54. Function structure of the adapting transmission  
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4.5.3 Step 3: Failure Functions and Failure Function Structure 
of the Adapting Transmission  

By negating the functions and with the determination of further failure 
functions under consideration of all operation conditions, the top failure 
functions (potential failure effects) are determined on the top level. For 
determining the potential failure modes the check list for physical failure 
modes is consulted. Likewise, for the potential failure causes the check 
lists mentioned in Section 2.5.3 are utilized. The acquired failure functions 
are represented in Figure 4.55. 

 

bearing cover 1
function

transmission
- transmit torque
  - torque not transmitted  
  - torque limited transmitted 
- environmental capability not
  ensured
  - no environmental capability

   - limited environmental 
    capability  

- …

drive
- transmit torque 
   drive
  - not transmitted 
  - partly transmitted

driven side
- transmit torque on
  driven side
- …

casing
- ensure sealing

 

- completely faulty

 

  sealing

casing right
function

static sealing
- function static
- sealing

- faulty sealing
  mechanism

casing left
function

sleeve
- axial fixation

- breakage

fitting key for pinion
function

radial shaft seal
function

roller bearing
function

pinion
function

input shaft
function

failure causes
sub function
- wrong choice of
  material
- unforeseen…
- false assembly

sub function 
- unfitting seal...
- dynamic stress
- relative 
  movemenl

failure causes

- worn

 
Figure 4.55. Failure functions of the adapting transmission 

4.5.4 Step 4: Risk Assessment of the Adapting Transmission 

An extract of the risk assessment on the adapting transmission is shown 
in Figure 4.56. 
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risk assessment
ris

k 
an

al
ys

is

Code: Item Code:
System: transmission Team: FMEA Team Transmission Created: 20.08.05
Potential 
Effects

S Potential
Failure 
Modes
 

Potential 
Causes

Preventive 
Actions

O Detection 
Actions

D RPN Responsibility / 
Target
Completion Date

System 
Elements:
sleeve

Function: axial fixation

axial
movement 
of the
construc-
tional 
element
[trans-
mission] 

 

6 breakage wrong 
choice of
material 
[sleeve]

Initial State: 
20.08.05

calculations 2 material 
test

4 48 Smith

unforeseen/
unallowable
stress 
[sleeve]

Initial State: 
20.08.05
calculations 2 function 

test
6 72

false 
assembly
(inverted)
[sleeve]

 

Initial State: 
20.08.05
construction 
guidelines

7 none 10 420 Bertsche

increased
axial play
[trans-
mission]

 

3 worn wrong 
choice of
material 
[sleeve]

 

Initial State: 
20.08.05
experience 
from rig
testing

2 7 42 Smith

Initial State: 
20.08.05

3 7 63

unforeseen/
unallowable 
stress 
[sleeve]

material 
test

function 
test

Smith

Smithexperience 
from rig
testing

 
Figure 4.56. Risk assessment of the adapting transmission 

After the risk assessment the results of the resulting RPN’s are analyzed. 
For this, a frequency analysis is created and the most critical 30% of the 
worst RPN’s (according to the Pareto principle) are determined. Addition-
ally, all individual assessment values greater than 8 are extracted. The 
results are summarized in the “highlights”. The “highlights” concerning 
RPN and the very high individual values of the entire FMEA are com-
pressed and represented in Figure 4.57. The “highlights” also serve as 
management information. 
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risk priority number RPN

sleeve, breakage

1.3
2.3

1.4
2.4

radial shaft seal,
no or false flow effect 540

180

occurrence O

sleeve, breakage1.7 7

1.4
2.4

radial shaft seal,
no or false flow effect 9

severity S

1.1
2.1

input shaft / output shaft
overload breakage /
fatigue breakage

 
9

detection D 
false layout 10

1.7
2.6 420

radial shaft seal,
worn

unforeseen, unallowable
stress 

10

 
Figure 4.57. Extract from the “highlights” for the adapting transmission 

4.5.5 Step 5: Optimization of the Adapting Transmission 

In this step further preventive and/or detection actions are defined for the 
points identified to be critical in order to minimize the risk of the potential 
failure causes. These actions are documented in the form sheet and un-
dergo a renewed risk assessment. 
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Code:
Item Code:

System: transmission Team: FMEA Team Transmission 
Created:  20.08.05

Potential 
Effects

S Potential
Failure 
Modes
 

Potential 
Causes

Preventive 
Actions

O Detection 
Actions

D RPN Responsibility / 
Target
Completion Date

System 
Elements:
sleeve

Function: axial fixation

axial
movement 
of the
construc-
tional 
element
[trans-
mission] 

 

6 breakage wrong 
choice of
material 
[sleeve]

Initial State: 
20.08.05
calculations 2 material 

test 4 48 Smith

unforeseen/
unallowable
stress 
[sleeve]

Initial State: 
20.08.05
calculations 2 function

test
6 72

false 
assembly
(inverted)
[sleeve]

 

Initial State: 
20.08.05
construction 
guidelines

7 none 10 420 Bertsche

increased
axial play
[trans-
mission]

 

3 worn wrong 
choice of
material 
[sleeve]

 

Initial State: 
20.08.05
experience 
from rig
testing

2 7 42 Smith

Initial State: 
20.08.05

3 7 63

unforeseen/
unallowable 
stress 
[sleeve]

material 
test

function
test

Smith

Smithexperience 
from rig
testing

State: 
10.05.07
sleeve with
double side
inner chamfer

visual
inspection

2 6 72

Modified: 10.05.07

opitmized risk assessment

opitmization

Bertsche

 
Figure 4.58. Optimization of the adapting transmission 

4.6 Example of a System FMEA Process according to 
 VDA 4.2 

The process for the manufacturing of the output shaft from the adapting 
transmission will be observed as an example in the following section, since 
this process has been identified to be a critical process. This can be deter-
mined under the consideration of the following main focus points: 

• new material, 

• partly new machining procedures or processes, 

• high torque to be transferred. 
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4.6.1 Step 1: System Elements and System Structure for the 
Manufacturing Process of the Output Shaft  

For the creation of the system structure the component drawing, see 
Figure 4.59, and the process flow chart, see Figure 4.60, are used. In the 
process flow chart all production steps and their cycle order are listed. 
 

bearing seat

shaft seal
run way 

shrink fit for
gear 

bearing seat  
Figure 4.59. Component drawing of the output shaft 

crate stacking unitstacking in cratesXXX130

measure function related
measurements (random sample) inspection postfinal inspection XXX120

wash and dryXXX110

reception between centers and
driver on output shaft pivotouter grinding machine

grinding of bearing seats,
seal surface (shaft seal

 
 XXX100

uninterrupted cut, reception
between centers and driver

vertical lathe machine
single spindle

hard turning of output shaft
pivotsXXX90

crate stacking unitstacking in cratesXXX90

cycle washing machinewash and dryXXX80

annealing furnaceannealingXXX70

straightening machinestraightenXXX60

continuous furnacecase hardeningXXX50

stacking in cratesXXX40

wash and dryXXX30

outer contour and relief groovesturning and milling
(keyway)  XXX20

cross-cutting and centering
m/ccross-cutting and centeringXXX 10

Machining before heat treatment

CommentsMeans of ProductionWork ProcessKSTAVO

Item Code:  A 130.246.1output shaft
adaptation transmission 

Description:
Adaptation Transmission

Machining after heat treatment

Heat treatment

crate stacking unit

cycle washing machine

lathe machine

cycle washing machine

 
Figure 4.60. Production cycle plan for the manufacturing of the output 
shaft 
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With these resources and with the help of the expertise and know-how of 
the participating FMEA team members a system structure for the failure 
functions of the transmission output shaft is set up, see Figure 4.61. 
 

output shaft 
production

machining before heat 
treatment – output shaft

heat treatment – 
output shaft

machining after 
heat treatment
 – output shaft

logistic to hard turning

hard turning of output
shaft pivots

man
machine
material

method

environmentlogistics to grinding

grinding of bearing 
seats, seal surface 
(shaft seal), shrink 
fit (gear) 

logistics to wash 
and dry

wash and dry

logistics to final 
inspection

final inspection

logistics to stacking 
shafts in crates

stacking in crates  
Figure 4.61. System structure for the manufacturing of the output shaft 

The system structure is enhanced with the respective logic steps between 
the producing, testing and measuring production steps. 

4.6.2 Step 2: Functions and Function Structure for the 
Manufacturing Process of the Output Shaft   

The determination of the functions is carried out with the help of the 
Black Box methodology and the knowledge of the participating team 
members. The result is shown in the production cycle plan in Figure 4.60. 
An extract of the function structure is shown in Figure 4.62.  
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4.6 Example of a System FMEA Process according to  VDA 4.2  
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4.6.3 Step 3: Failure Functions and Failure Function Structure 
for the Manufacturing Process of the Output Shaft   

By negating the functions including specifications and with the determi-
nation of further failure functions under consideration of all operation con-
ditions, the top failure functions (potential failure effects) and failure 
modes of the respective process steps are determined for the creation of the 
failure functions and the failure function structure. The failure function 
structure is shown in Figure 4.63. 

4.6.4 Step 4: Risk Assessment of the Manufacturing Process 
of the Output Shaft   

The is-state of the process with the preventive and detection actions al-
ready integrated into the manufacturing process are documented for the 
manufacturing process of the output shaft. The assessment of the occur-
rence and detection is carried out with the help of the assessment criteria 
according to VDA 4.2, see Section 4.4.4, and with knowledge about the 
current and comparable previous processes. An extract of the risk assess-
ment is shown in Figure 4.64 along with the respective optimization state. 

4.6.5 Step 5: Optimization of the Manufacturing Process of 
the Output Shaft   

In this step further preventive and/or detection actions are defined for the 
points identified to be critical in order to minimize the risk of the potential 
failure causes. These actions are documented in the form sheet and un-
dergo a renewed risk assessment, see Figure 4.64. 
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4.6 Example of a System FMEA Process according to  VDA 4.2  
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Figure 4.64. Risk assessment and optimization (extract) 
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5 Fault Tree Analysis, FTA   

The Fault Tree Analysis (FTA) is a structured procedure for the identifi-
cation of internal and external causes, which if they occur on their own or 
in combination, can lead to a defined product state (mostly a fault state) 
[5.8]. Thereby the FTA defines the system behaviour in regards to a cer-
tain event (and/or fault).   

The FTA was developed in 1962 by H. A. Watson (Bell Laboratories) by 
order of the U.S. Air Force. Boeing was the first commercial company that 
saw the benefits of the method and started to use the FTA for the devel-
opment of commercial aircrafts (1966). In the seventies the method was 
used in particular in the area of nuclear power techniques, whereupon the 
FTA started to spread out worldwide in the eighties. Nowadays the method 
is used worldwide in many different areas e.g. in the automotive industry, 
for communication systems and in the last couple of years in the field of 
robotics [ 5.1,  5.4].  

The FTA is used to display the functionalities of a system and to quan-
tify the system reliability. The method can be applied as a diagnosis and 
development tool and is especially helpful in early design stages. Thus, 
potential system faults can be identified and design alternatives can be 
evaluated. One of the major advantages of FTA is that the method provides 
both qualitative and quantitative results.  

The FTA can be used for each kind of reliability system analysis includ-
ing analysis with common mode and human failures. In these cases, the 
FTA provides complete results, which means that by consequent execu-
tion, all failure modes and/or failure causes are discovered because of the 
deductive procedure. Thus, the method is limited by both the system 
knowledge and the operational benefits defined by the user.  

The FTA is based on Boolean algebra and probability theory and thus 
with a couple of simple rules and symbols it is possible to analyze complex 
system and complex dependencies e.g. between hardware, software and 
people. Due to the existing stress of competition, product design cycle with 
its cost optimization potentials plays an important role. Costs of failures 
increase with progression in the product design cycle, so that early failure 
detection offers the potential for massive cost reduction.  

B. Bertsche, Reliability in Automotive and Mechanical Engineering. VDI-Buch,  
doi: 10.1007/978-3-540-34282-3_5, © Springer-Verlag Berlin Heidelberg 2008 
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In this relation the usage of the FTA as preventive quality assurance in 
early design stages has proven to be quite beneficial. With the execution of 
an FTA in the concept phase the system concept could be confirmed or 
fundamental failures could be found. With these analyses new require-
ments and adequate failure preventive actions can be introduced after the 
specifications are complete, see Figure 5.1.  
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on project
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needs

specifica-
tions

design
decision

begin of
pilot series job nr.1

 
Figure 5.1. Placement in the product design cycle (car) 

5.1 General Procedure of the FTA 

The successful application of a Fault Tree Analysis requires a system 
analysis. Here, the system is subdivided exemplary into sub-systems and 
components.  

In order to determine the failure behaviour of the system or of the system 
components and its interfaces, the undesired system events must first be 
defined. In the next step it will be examined which possible failures on the 
next lower system level could be expected and how they can be linked to 
the superior failures. This step is repeated until the lowest system level is 
reached on which the component failure mode is defined, so that the result 
of the complete failure behaviour is found.   

5.1.1 Failure Modes  

DIN 25424 distinguishes between three failure modes: primary, secon-
dary and command failure, see Figure 5.2. A primary failure is a compo-
nent failure under permitted conditions, whereas a secondary failure is a 
consecutive fault which is caused by incorrect operation conditions for a 
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component. A command failure is caused by a wrong and missing induce-
ment or the failure of an auxiliary source, despite the fact that the compo-
nent is perfectly functional [5.3]  
 

 
primary failure secondary failure command failure

component failure
due to its own weakness

component failure
due to respective
surrounding conditions
or incorrect operation
conditions (only for
open systems)

failure despite functional
components, due to a
wrong or missing
inducement 

sand

 
Figure 5.2. System failure modes according to DIN 25424 

5.1.2 Symbolism 

In order to describe a system systematically in a fault tree, the individual 
inputs are networked together in different ways. Diverse symbols are used 
to visualize these networks. The following list describes the most common 
symbols illustrated in Figure 5.3: 

• Standard input: this symbol stands for a primary fault of a function-
related element. It describes a failure cause without any further condi-
tions. Parameters for the primary failure are assigned to the graphical 
symbol. 

• Transfer input and output: with this symbol the fault tree is interrupted 
or continued at a different place. 

• Commentary: these symbols are used for the description of input and 
output in between the network symbols. 

• For AND-operations the event at the output only occurs if all events at 
the input occur  

• For OR-operations only one event at the input has to occur for the event 
at the output to occur. 
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• The NOT-operations stands for the case of negation. Thus, for the event 
at the output to occur, the event at the input must occur.  

 

Symbols for the Fault Tree Analysis according to DIN 25424:

standard input

input and output transfer

commentary

x1
x2

y

≥1&

x1

y

x

y

AND
operation

OR
operation

NOT
operation

x2

Other symbols for the Fault Tree Analysis according to Meyna [5.9]: 
AND 

operation
(conjunction)

OR
operation

(disjunction) 

NOT
operation

(negation) 

x yy y

x1

x2

x1

x2  
Figure 5.3. Symbolism of the Fault Tree Analysis 

5.2 Qualitative Fault Tree Analysis 

5.2.1 Qualitative Objectives 

The qualitative fault tree analysis deals with the unwanted events, which 
could occur in a system. Such events (also called TOP events) are unde-
sired system states, which can be traced back to failed single components 
(DOWN cause). The fault tree is a model that graphically illustrates and 
logically networks all combinations of undesired system states. Thereby 
the objectives of the FTA are: 
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• Systematic identification of all possible failures as well as all failure 
combinations and their causes, which could lead to an undesired event, 
the main event. 

• Illustration of especially critical events and/or event combinations (e.g. 
failure functions that lead to an undesired event). 

• To gain objective evaluation criteria of system concepts. 
• A clear documentation of the failure mechanism and their functional 

relations. 

5.2.2 Basic Procedure 

In order to determine the failure behaviour (failure function, type of fail-
ure) of a system and/or of the system elements (assembly, components) 
together with their connections, the undesired system event (TOP-event) is 
firstly defined. Because of the deductive procedure (TOP-DOWN 
method), in the next step possible failures to be expected on the next lower 
system level and how they could be connected to the superior failure are 
analyzed. This step is repeated until the lowest system level is reached.  
The lowest system level corresponds to the possible failure modes, thus 
determining the complete failure behaviour of a system, see Figure 5.4. 
 

component characteristic, design flaw
(DOWN)

undesired result, system failure
(TOP)

failure of the partial system

failure of the assembly group

failure of the component

failure modes
primary, secondary, command

 
Figure 5.4. Basic procedure for the structure of a fault tree 

In the standard DIN 25424 the following systematic procedure for the 
structure of a fault tree is described [ 5.3]: 
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1. The undesired event is determined. 
2. If this event is already a failure mode of a component the procedure will 

be continued with step 4. Otherwise, all failures are determined which 
could lead to the undesired event. 

3. The failures are inscribed in commentary rectangles and are logically 
connected with the fault tree symbols. If the failures are failures modes, 
then the procedure skips to step 4. Otherwise, step 2-3 are repeated. 

4. In most cases the single failures are linked with OR connections, since 
each input event leads to the event at the output. These entries are 
thereby allocated among primary, secondary and command failures. Pri-
mary failures cannot be further analyzed with the fault tree analysis and 
thus mark a standard entry to the system; whereas, secondary and com-
mand failures do not necessarily have to be present. If, however, these 
are present, the failure is not a failure of a functional element and thus is 
partitioned further. The procedure begins again with step 2.  
 

 An example for such a qualitative fault tree is shown in Figure 5.5. 
Here, the TOP event, the failure of the transmission, is firstly divided into 
the single assembly groups whose failure could cause the failure of the 
complete transmission and are thereby linked with an OR connection. Af-
terwards, the failure of the assembly “output” is further analyzed and the 
elements are detected which could lead to a failure of the assembly groups 
on the next highest level. In this way the individual elements, in this ex-
ample in particular the failure of the gear, are further partitioned in the 
failure modes of the components, to which tooth failure of the gear is also 
included. The tooth failure can possess different causes so that the failure 
mode must be further divided until the level of component characteristic 
and/or the development failure is reached. In this case, overload or incor-
rect calculation can lead to tooth failure of the gear. Those two failures, 
however, still do not represent standard inputs and therefore have to be 
analyzed further. The incorrect operation represents a standard input and 
cannot be further subdivided. Thus, the fault tree is finished at this point.  
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Figure 5.5. Fault tree for the example transmission 

5.2.3 Comparison between FMEA and FTA  

In comparison to FTA, failure combinations are not part of an FMEA. 
Therefore, the use of an FMEA as a basis for an FTA is limited. FMEA 
deals more with the evaluation of failure modes for a system und their 
effects on the system [ 5.11] thus making FMEA a good source and/or sys-
tematic catalogue of possible failure modes for the FTA. The major differ-
ence between the two methods is that the FMEA is an inductive method 
and the FTA is a deductive method. This means that FMEA examines the 
effects for a failure cause of a component on the device whereas FTA 
traces the failure of the device back to the failure cause of the component. 
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Figure 5.6. Comparison of FMEA and FTA 

In comparing the two methods, the FMEA can be characterized by the 
following features: 

• FMEA combines the two questions “What is the cause?” and “What are 
the effects of the failure?”, 

• is not as systematic as the FTA, 
• assesses the risk of a failure by the combination of the two questions 

and defines preventive actions depending on the risk potential.  

The FTA can be characterized by the following features: 

• Systematic search of causes for an event and/or failure 
• ETA (Event Tree Analysis) searches the effects of a failure.  
 

Recapitulating the comparison of the two methods one determines: 

• FMEA and FTA are different methods with a similar subject matter. 

• The determination of failures in the FTA can be eased with precognition 
of FMEA. 

• FMEA examines single failures and skips levels. 
• FTA is more systematic 
• FTA uses the combinations AND, OR, NOT, Maintenance / Repair. 
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5.3 Quantitative Fault Tree Analysis 

5.3.1 Quantitative Objectives  

With the help of a fault tree analysis a system can not only be describe 
qualitatively but also provides the possibility to make a quantitative state-
ment concerning the failure behaviour of the system. The reliability pa-
rameters (e.g. entry probability of the undesired event or system 
availability) can be calculated with the system structure with help of the 
Boolean model if the failure probabilities of the single components are 
known. Thus, factors which influence the system reliability the most se-
verely can be analyzed, such as changes for the improvement of the system 
reliability factors.  

5.3.2 Boolean Modelling  

5.3.2.1 Basic Connections of the Boolean Modelling  

For the determination of the system reliability the Boolean modelling 
(see. Chapter 2) can be used [5.12]. Here, the symbols of the fault tree are 
transferred into numerical values with the help of a few simple calculation 
rules. 

Negation 
If a Boolean variable has the value of 1, than the negated variable has the 

value 0 and vice versa, see Table 5.1. 

xy = . (5.1) 

Disjunction 
The disjunction stands for the Boolean function OR and its appliance can 

be found in many cases in which it is sufficient if only one event of two or 
more must occur at the entry in order to cause the event at the output [ 5.9]. 
For example, for two binary variables a disjunction is given if x1 or x2 
equals 1 as well as if x1 and x2 equal 1. For these cases the output results to 
y = 1 and one speaks of an inclusive or (lat. vel).  
 

Only when x1 and x2 equal 0 does y = 0, see Table 5.1. 

21 xxy ∨= . (5.2) 

Out of this these equations follows that 
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,;11
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=∨=∨

xxxx

xxxx
 (5.3) 

as well as 

1221 xxxx ∨=∨  (commutative law) (5.4) 

are valid condition for the disjunction of two variables. Thus, for a disjunc-
tion of n independent variables  

i

n

i
xy ∨

=

=
1

 with 
⎩
⎨
⎧ =

=
otherwise  1

0for  0 ix
y . (5.5) 

Conjunction 
The conjunction stands for the Boolean function AND. All events at the 

input must be present in order for the event at the output to occur. A con-
junction of two binary variables results if x1 and x2 equal 1. Only in this 
case does the result yield y = 1, see Table 5.1. 
Table 5.1. Overview of the basic connections 

function 
table 

symbol name synonym Boolean 
equation  

operator 

x1 x2 y DIN 25424 acc. [5.9] 
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1 1 1  

 

   
     

 
With the help of Venn diagrams the described Boolean basic connections 

can be graphically illustrated. Thereby, all possibilities of Ω are displayed 
in a rectangle and the possibilities which actually occur are displayed in a 
hatched area, see Figure 5.7. 
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negation disjunction conjunction

y = x1 ∧ x2y = x1 ∨ x2y = x

(Ω)

x
x1

x2

x1

x2

(Ω) (Ω)

 
Figure 5.7. Venn diagrams of the basic connections [ 5.13] 

5.3.2.2 Axioms and Boolean Algebra  

With the help of the axioms and Boolean algebra, introduced in the fol-
lowing section, it is possible to change and/or simplify Boolean terms 
mathematically [ 5.6]. 

Commutative law 

1221 xxxx ∧=∧ , (5.6) 

1221 xxxx ∨=∨ , (5.7) 

Associative law 

321321 )()( xxxxxx ∨∨=∨∨ , (5.8) 

321321 )()( xxxxxx ∧∧=∧∧ , (5.9) 

Distributive law 

)()()( 3121321 xxxxxxx ∨∧∨=∧∨ , (5.10) 

)()()( 3121321 xxxxxxx ∧∨∧=∨∧ , (5.11) 

These three laws are already well known from common algebra, so that 
in Boolean algebra, in order to simplify the terms, the parentheses can also 
be multiplied by other terms.   

Postulates 
Existence of 0 and 1 elements 

xx =∨ 0 , (5.12) 
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xx =∧1 , (5.13) 

Existence of a complement 

0=∧ xx , (5.14) 

1=∨ xx , (5.15) 

Idempotent law 

xxx =∨ , (5.16) 

xxx =∧ , (5.17) 

Absorption law 

1211 )( xxxx =∧∨ , (5.18) 

1211 )( xxxx =∨∧ , (5.19) 

De Morgan law 

2121 xxxx ∧=∨ , (5.20) 

2121 xxxx ∨=∧ , (5.21) 

Furthermore: 

xx = , (5.22) 

11 =∨x , (5.23) 

00 =∧x . (5.24) 

 
In reliability theory the De Morgan law as well as the idempotent and 

absorption law are of high importance for the conversion between fault 
tree and function tree. 
 

Fault tree and function tree  

Principally, the method of the function tree in based on the same proce-
dure as the FTA. In this method, instead of defining a failure mode as the 
main event, one defines a desired and/or a preferable event. All intermedi-
ate events as well as primary events, which secure the occurrence of the 
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main event, are found deductively. If the logical counterpart of the top 
event of a fault tree is used as a main event for the function tree, the func-
tion tree can be gained as logical complement to the fault tree due to the 
Boolean structure. A fault tree can thus be transferred into a function tree 
and vice versa with the help of the negation operator. The only difference 
is that the function tree produces the system reliability as a result instead of 
the failure probability, see Figure 5.8. 

 
The same can be achieved if the existing correlation 

)(1)( tRtF SS −=  (5.25) 

between failure probability and reliability is considered. 
 

Fault Tree Function Tree

x1

xn

y
x1

xn

y

The following can then be determined:
System Failure

Probability
Fs = Fs(F1,...,Fn)

System Reliability

Rs = Rs(R1,...,Rn)  
Figure 5.8. Correlation between fault tree and function tree 

5.3.2.3 Transition to Probabilities   

The failure behaviour of each component can be described by failure 
and/or reliability probabilities. By the transition of Boolean expressions to 
the description using probabilities, the failure and/or reliability probability 
for the whole system can be generated with the usage of simple transfor-
mations [ 5.9]. Here, the Boolean function can firstly be transferred into a 
term of real variables xi, if only the real numbers 0 and 1 are used and all 
occurring variables are linear. Thus, the system behaviour can be described 
as a discrete zero-one distribution. In the second step, these discrete vari-
ables can be merged into continuous probability functions for the failure 
and/or survival of a component. For the most important connections, the 
transition from the logical to the mathematical notation can be carried out 
according to Table 5.2. 
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Table 5.2. Transition to probabilities 
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i
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n

iS
=
∧=∧∧=

∏
=

=
n

i
iS tRtR

1

)()(  

5.3.3 Application to Systems 

5.3.3.1 Series and Parallel Configuration  

If it is possible to assign the two states “functional” and “failed” to a sys-
tem and its components, a technical system can be described with the help 
of Boolean algebra subject to the states of its components. The positive 
logic forms the basis of the definition of the term system function. Here, 
the system reliability is determined by the reliabilities of the single com-
ponents. In the application of the FTA, the rules of the negation logic are 
used, generally in order to determine the failure behaviour and thus the 
failure probability. The following tables (Table 5.3 and Table 5.4) show 
several typical basic structures und their formation for the system function 
(positive and negative logic). 
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Table 5.3. Positive logic 

System structure Serial configuration Parallel configuration 

Block diagram 
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Table 5.4. Negative logic 

System structure Serial configuration Parallel configuration 

Block diagram 
 

 

Function tree 
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5.3.3.2 Bridge Configuration 

In a bridge configuration, see Figure 5.9, the reliability cannot be calcu-
lated by the elementary equations for serial und parallel systems. For sys-
tems with a small number of elements it is still possible to use the 
disjunctive normal form [ 5.5]. If the system consists of n elements, the 
effort remarkably increases, since each system equation exists of 2n terms. 
To determine the reliability and/or failure probability of a system in such a 
case with low effort, the following methods can be applied: 

• minimal cut sets,  
• minimal path sets and 
• solve by separation  
 

x1 x3

x2 x4

x5

 
Figure 5.9. Bridge configuration 

Method of Minimal Cut Sets 
In the method of minimal cut sets all combinations of the components, 

whose failure could lead to the failure of the system, are searched for by all 
possible cuts in the structure. All components are negated and are con-
nected inside of the cut sets by and operators and on the outside by or op-
erators, resulting in a negative output – the failure probability, see Figure 
5.10. 
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y

x2

x3
x4

x1x4
x5
x2
x3
x5

x1

y = (x1∧x2)∨(x3∧x4)∨
(x1∧x4∧x5)∨(x2∧x3∧x5)

C1 = {x1, x2}

C1 C2

C3

C4

Cut Sets: 

System Function: 

Fault Tree: 

x5

x1 x3

x2 x4
C2 = {x3, x4}

C3 = {x1, x4, x5} C4 = {x2, x3, x5}

 
Figure 5.10. Method of minimal cut sets 

The system failed if all components in one of the minimal cuts failed. 
Therewith, the Boolean function for the system failure can be determined 
as  

},,,{},,,{

},,{},,{

53245413

432211

xxxCxxxC

xxCxxC

==

==
 (5.26) 

).()()()( 5325414321 xxxxxxxxxxy ∧∧∨∧∧∨∧∨∧=  (5.27) 

Method of Minimal Path Sets  
In the method of minimal path sets all combinations of the components, 

whose operation ensures the function of the system, are determined by 
theoretical paths in the structure. All components are determined to be 
positive and are connected inside of the path sets by and operators and at 
the outside by or operators, resulting in a positive output – the system reli-
ability, see Figure 5.11. 
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Function Tree: 

y = (x1∧x3)∨(x2∧x4)∨
(x1∧x4∧x5)∨(x2∧x3∧x5)

P1 = {x1, x3}

Path Sets: 

System Function: 

P2 = {x2, x4}
P3 = {x1, x4, x5} P4 = {x2, x3, x5}

y

x3

x2
x4

x1x4
x5
x2
x3
x5

x1

x5

x1 x3

x2 x4

P1

P3

P4

P2

 
Figure 5.11. Method of minimal path sets 

The system is considered to be operational if at least one path is opera-
tional. The Boolean function of the operability for the system can be de-
termined as: 

,},,{},,{},{},,{ 53245413422311 xxxPxxxPxxPxxP ==== (5.28) 

.)()()()( 5325414231 xxxxxxxxxxy ∧∧∨∧∧∨∧∨∧=  (5.29) 

The transition to the probabilities in these two methods can be carried 
out with the help of the Poincaré algorithm or the top down algorithm, 
which are described more detailed in [5.9]. 

Method of the relevant system component (Separation)  
Since the system component x5 is operational in both directions, this 

component plays a key role in this bridge configuration and can thus be 
separated, see Figure 5.12. 
 



www.manaraa.com

178      5 Fault Tree Analysis, FTA 

 

Bridge Configuration

x5 continuously failed

x5 continuously operational

Path Sets

Separation
of x5 

x5

x1 x3

x2 x4 + Path Sets

yI = x5∧[(x1∧x3)∨(x1∧x4)∨

(x2∧x3)∨(x2∧x4)]

x1 x3

x2 x4

x1 x3

x2 x4

yII = x5∧[(x1∧x3)∨(x2∧x4)]

 
Figure 5.12. Method of the relevant system component (Separation) 

For the component x5, the two states “continuously operational” and 
“continuously failed” are regarded separately and afterwards reconnected 
with each other. In the first case, where x5 is operational at all times, the 
component x5 is determined to be positive, connected with the single suc-
cess paths and connected by AND operators: 

( ) ( ) ( ) ( )[ ]423241315 xxxxxxxxxyI ∧∨∧∨∧∨∧∧= . (5.30) 

Using the distributive law  

( )( ) ( )( )[ ]4324315 xxxxxxxyI ∨∧∨∨∧∧=  (5.31) 

and the commutative law 

( )( ) ( )( )[ ]2431435 xxxxxxxyI ∧∨∨∧∨∧=  (5.32) 

as well as substituting ( )43 xx ∨  with *x  

( ) ( )[ ]2
*

1
*

5 xxxxxyI ∧∨∧∧=  (5.33) 
and reapplying the distributive law, one yields 

( )[ ]
( ) ( )[ ].21435

21
*

5

xxxxx
xxxxyI

∨∧∨∧=
∨∧∧=

 (5.34) 
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With the transition to the probabilities the first case reliability results to 

( ) ( )( )[ ( ) ( )( )]21435 111111 RRRRRRI −⋅−−⋅−⋅−−⋅= . (5.35) 

The same will be done for the second case in which x5 fails at all times. 
In doing so, it is possible to jump directly to the reliability: 

( ) ( )[ ]42315 xxxxxyII ∧∨∧∧= , (5.36) 

( ) ( ) ( )( )[ ]42315 1111 RRRRRRII −⋅−−⋅−= . (5.37) 

The two probabilities can be connected because of their independence 
upon the events and the theorem of total probability [5.2], so that the fol-
lowing system reliability is yielded: 

( ) ( ) ( ) ( )[ ]
( ) ( )[ ] ,42315

423241315

xxxxx

xxxxxxxxxy

∧∨∧∧

∨∧∨∧∨∧∨∧∧=
 (5.38) 

( ) ( )( ) ( ) ( )( )[ ]
( ) ( ) ( )( )[ ].1111

111111

42315

21435

RRRRR
RRRRRR

−⋅−−⋅−+
−⋅−−⋅−⋅−−⋅=

 (5.39) 

5.4 Reliability Graph 

A further possibility to describe systems clearly is the reliability graph. 
Reliability graphs are used in particular to describe reliabilities of net-
works [ 5.7]. They consist of knots and (connection) edges. The edges are 
distinguished by component edges and ∞ edges. One component is imaged 
by a maximum of one component edge. Thus, repeated edges are not al-
lowed. The failure of components is illustrated by the interruption of the 
edge. The ∞ edges and the knots do not fail. The modelled system is re-
garded as operational as long as at least one path with non failed edges 
leads from one “source knot” to a “drain knot”, see Figure 5.13. 
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source drain
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C

D

E

∞

∞

 
Figure 5.13. Example of a reliability graph 

5.5 Examples 

5.5.1 Tooth Flank Crack 

The first example shows a fault tree of a tooth flank crack caused by a 
material failure. In the process of the analysis the causes for the occurring 
tooth flank crack are determined step by step. First of all, it is considered, 
that the gear was used under incorrect operational conditions and the crack 
was caused, for example, by an incorrect high operational stress. Neverthe-
less, a further cause for the failure behaviour could also be a damaged 
tooth flank, see Figure 5.14. Therefore, there are three further failure 
causes on one system level lower: a production failure while producing the 
tooth flank, a constructive failure or a material failure. If the analysis for 
the material failure is continued, it is possible that in principle, the wrong 
material was chosen, which means that it is not suitable for this kind of 
usage. Another possibility is an incorrect structure out of fitting material, 
which also represents an incorrect material. 
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tooth flank crack
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incorrect operational
conditions

damaged
tooth flank

≥1
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failure

incorrect mat-
erial structure
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sinkholes

≥1

≥1≥1

≥1 ≥1

 
Figure 5.14.  Fault tree of a tooth flank crack for a material failure 

Another cause related to the usage of wrong material besides a false al-
loy could also be a mix-up of the materials or a mismatching of materials. 
Each of these three causes stands for a standard input in the fault tree. On 
the other hand, an incorrect material structure could be caused by segrega-
tion, coarse grain formation, inclusions or hollow spaces. Inclusions can be 
caused either by slag or by contaminants. Hollow spaces can be caused by 
sinkholes or by the formation of crystalline cracks. Because each of these 
points is a standard input to the fault tree, the branch of the incorrect 
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Whereas in the previous example a material failure was assumed for the 
tooth flank crack, the fault tree analysis shown in Figure 5.15 is continued 
under the assumption of a constructive failure.  

 

≥1

tooth flank crack

incorrect operational
conditions

damaged
tooth flank

material
failure

constructive
failure

production
failure

false
dimensioning

wrong
tooth profile

wrong
backslash

incorrect
calculation

mistakes in the
technical drawings

mistake in
the calculation 

wrong calc-
ulation model

false
dimensions

incorrect or
inexact illustration

calculation model
unsuitable

calculation model
inexact

≥1

≥1

≥1

≥1 ≥1

≥1

 
Figure 5.15. Fault tree for a tooth flank crack with a constructive failure 

 

material is completed and the fault tree analysis can be continued for 
further branches.  
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Here, the causes that could lead to the tooth flank crack caused by a con-
structive failure are determined: false dimensioning, wrong tooth profile 
and/or wrong backlash. The two latter failures are standard inputs to the 
fault tree and therefore do not have to be further considered, so that the 
upcoming considerations only have to be made for false dimensioning. 
Reasons for false dimensioning of the teeth could be incorrect calculation 
or mistakes in the technical drawings, which are the basics for the produc-
tion of the tooth flank. Failures in the technical drawings could be false 
dimensions or an incorrect and/or an inexact illustration. If the incorrect 
dimensioning is caused by incorrect calculation, it is either possible that 
this is caused by a mistake in the calculation or by a wrong calculation 
model was used for the calculation. The calculation model used may be 
inexact or in principle unsuitable for this kind of calculation.  

Since all inputs are now standard inputs to the fault tree, the determina-
tion of the constructive failures is finished. The fault tree analysis of the 
tooth flank crack is continued with either a production failure, which could 
lead to an incorrect tooth flank, or the determination of incorrect opera-
tional stresses. 

5.5.2 Fault Tree Analysis of a Radial Seal Ring  

This example [5.10] refers in particular to the design phase. The design 
of the radial seal ring is a packing box, see Figure 5.16, and is used for the 
sealing of air leakage of the cooling air under high pressure of a big gen-
erator coupled with a bulb turbine.  

The pressure difference is 1.5 bar and the dimensions are substantial. 
The packing box runs against a “thermal protection core”. The assembly is 
analyzed in regards to possible failure behaviours. 

 



www.manaraa.com

184      5 Fault Tree Analysis, FTA 

 

11 10 9 8
6

5

4
3
7

p1

p0

2a
2
1

Ø
 1

20
0

Ø
 9

89

228

Ø
 9

20
H

7
h6

100

 
Figure 5.16. Radial seal ring of a big generator for locking cooling air [ 5.10] 

The overall function is the “locking of cooling air”. To start the analysis 
it is useful to determine the sub-functions, which are fulfilled by the indi-
vidual components. If, for example, no function structure is given, then 
this can be done best with the help of a table, see Table 5.5. For the func-
tion “locking” the following sub-functions are essential: 

• to apply contact force, 
• to seal sliding and  
• to dissipate frictional heat. 
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Table 5.5. Analysis of the components according to Figure 5.16 to identify func-
tions assumed [ 5.10] 

Nr. part function 
1 shaft transmit torque, carry core, dissipate frictional 

heat 
2, 2a core (2 parts, 

screwed) 
provide contact and sealing surface, protect 
shaft, transmit frictional heat 

3 package ring seal sliding medium, accept contact force and 
apply sealing pressure 

4 wiper ring protect from splash oil 
5 packing box accept package ring, accept and transmit contact 

force  
6 base frame carry part 4 and 5 
7 o-seal seal between p1 and p0  
8 tension spring provide contact force 
9 spring seat transmit spring force 
10 tension ring transmit contact force, carry tension spring 
11 screw pre-stress springs adjustable 

 
In the following process of the analysis, the sub-functions are negated 

and at the same time, possible causes for the failure behaviour are deter-
mined, see Figure 5.17.  

The result of the fault tree primarily points the failure behaviour of the 
thermal protection core 2, due to heat instable behaviour: the arising fric-
tion heat on the hydroplane can practically only flow to the shaft by using 
the core. Thus, the core becomes warm and expands. However, if the 
warming continues, the friction increases and starts to lift off of the shaft. 
This leads to an additional leakage and damages the shaft surface by incor-
rect sliding of the core on the shaft. This configuration is unsuitable and 
requires principal constructive improvements: Either the package box is 
blocked with the shaft and rotates together with the shaft and the thermal 
protection core is left out (heat dissipation by housing 5) or usage of a 
radial seal ring with radial sealing surface. Further corrective actions are 
necessary if the configuration is retained:  

• The support of housing against the base frame is unsuitable, because 
with pre-stressed package, the housing can be twisted with the shaft.  
If the sealing 7 is on the inside, the provided contact force of the pres-
sure difference is too low to accept the friction torque by force transmis-
sion by friction. Remedy: place seal 7 at the outer diameter of housing 
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5. Even better would be a secure form fit for the transmission of the fric-
tion torque. 

• In the illustrated position the spring 8 cannot be retightened. Remedy: 
provide sufficient instep way. 

• Due to operational safety and to simplify the configuration, it is more 
favourable to use a pressure spring than a tension spring. 

 Basically, it is possible that the improved constructive design requires a 
look at other fields such as production, assembling and operation (usage 
and maintenance) besides the constructive action. If necessary, the corre-
sponding test protocols must be requested, see Figure 5.17. 
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Figure 5.17. Fault tree of a radial seal ring [5.10] 

 
Recapitulating, the following procedure for the search of failures and 

disturbance can be given: 
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• Identify the functions and negated them. 
• Search for the reasons for the non-fulfilment of the functions (out of the 

unclear function structure, non-ideal active principle, non-ideal configu-
ration). 

5.6 Exercise Problems to the Fault Tree Analysis 

Problem 5.1 
Calculate the reliability of the given function tree, see Figure 5.18. Also, 
create the fault tree.  
 

x3

x4

x2

x1

y

 
Figure 5.18.  Function tree to Problem 5.1 

Exercise 5.2 
Create the fault and function trees for the given block diagrams, see Figure 
5.19. Determine the failure probability Fs of the given systems as a func-
tion of the respective component reliabilities Ri. 
 
a)

b)

c)

d)

e)
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Figure 5.19. Block diagrams to Problem 5.2 
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Problem 5.3 
The principle drawing of a jumbo jet is given below, see Figure 5.20. The 
system “undercarriage” fails, if the undercarriage at the front OR at the 
back on the right side AND on the back left side OR the wing undercar-
riage on the right OR on the left side fails. An undercarriage fails, if not a 
single wheel is available.  

 

 
Figure 5.20.  Drawing of the undercarriage of a Boeing 747 

a) Create the fault tree. 
b) Determine the Boolean system function for the failure of the system 

“undercarriage” 
c) Determine the system equation for the failure probability FS 
d) Determine the Boolean system function for the operability of the sys-

tem “undercarriage”. 
e) Determine the system equation for the reliability RS and create the 

corresponding block diagram. 

Problem 5.4 
In order to ensure the reliability of security device a system is built up with 
redundancies.  
It consists in three generators (in the block diagram termed with x1, x2, x3) 
and two engines (x4, x5 ), see figure. 
 
 



www.manaraa.com

5.6 Exercise Problems to the Fault Tree Analysis      189 

 

x1 x4

x3 x5

I
x2

O

 

Figure 5.21.  Block diagram of a security device 

Determine the Reliability of the security device by separation of x2. 

Problem 5.5 
A part of a fault tree for an ABS control unit is given. 
a) Determine the Boolean system function for the failure of the control 

unit. 
b) Calculate the failure probability of the system 
c) Determine the system function fort he operability of the control unit.  
d) Create the block diagram.  
x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

FSA1 short-circuits for the mass

FSA2 short-circuits for the mass 

contact is welded on the vetile release

processor error on the series interface 

software error micro-controller 1

software error micro-controller 2

software error micro-controller 2

FSA2 short-circuits for the mass

y

voltage regulator cannot shut off over the
ventil release

VR short-circuits for the mass

 
Figure 5.22.  Part of a fault tree of an ABS control unit 
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6 Assessment of Lifetime Tests and Failure 
Statistics 

In this chapter, the planning of lifetime tests and various assessment 
strategies will be dealt. Here, the most important fundamental principles 
for such procedures will be introduced. 

The emphasis of this chapter is the assessment of failure times so that 
the failure behaviour of components and systems can be described. For 
this, the unknown distribution parameters are determined through various 
graphical and analytical methods. The Weibull distribution will be used as 
it is the most widely adopted in the area of mechanical engineering. 

The most important “confidence levels” for the assessment will be de-
scribed in detail. This is necessary since normally it is not possible to 
gather the lifetimes of several different parts (statistically spoken: the 
population or universe). Generally, it is only possible to determine the 
failure times of a small number of components.  In statistics, this limited 
number of components taken as a test specimen signifies the population, 
see Figure 6.1. Therefore, only a statement can be made from the assess-
ment concerning the test specimen. However, a statement concerning the 
entire population is desired! The failure behaviour resulting from an as-
sessment of the test specimen can sometimes strongly deviate from the 
actual failure behaviour of the population itself, especially if only a few 
components have been tested. Here, the statistics offers a further help 
through the “confidence levels”, with which it is possible to specify the 
veracity of the test specimen results. Thus, it is possible to estimate the 
failure behaviour of the population. 

 

B. Bertsche, Reliability in Automotive and Mechanical Engineering. VDI-Buch,  
doi: 10.1007/978-3-540-34282-3_6, © Springer-Verlag Berlin Heidelberg 2008 
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-

test specimen

lifetime /
entire population  

Figure 6.1. Conclusion drawn from the test specimen concerning the entire popu-
lation 

6.1 Planning Lifetime Tests 

Planning lifetime tests can be divided into experimental-technical meas-
urement planning and statistical test planning. 

Experimental-Technical Measurement Planning 
Here, the common fundamental principles for correct execution of an ex-
periment apply. The most important of these principles are as listed: 

• The boundary conditions and limits must be exactly defined and kept.  
For lifetime tests this is especially important for the load spectrum.  
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• The technical measurement process for the registration and control of 
the boundary conditions must be established along with their accuracy. 
Here, depending upon the resources, more information is acquired at the 
test stand than actually needed.  

• If longer testing times are expected, then the use of automated and/or 
computer controlled measured value gathering and control equipment 
should be strived for. 

• For a determination of the lifetime, the exact specification of a limit 
value is necessary, at which the nominal function is no longer fulfilled. 
If the damage is a continuously changing value, as for example a leak 
volume for a seal. 

• The control equipment must be built up in such a way that the primary 
failure cause can even be determined after the failure effect. This is im-
portant since each failure mode is assigned its own characteristic reli-
ability parameters. 

Statistical Test Planning 
In statistical test planning the first step involves determining the size of 

the inspection lot. The inspection lot size is in close connection with the 
confidence levels and the statistical spread of the measured values, see 
Sections 6.2 and 6.3.2. If fewer components are tested, then the result of 
the statistical assessment becomes more uncertain. For an accurate result it 
is necessary that a sufficient quantity of components is tested. This can 
increase the time and effort involved in a test immensely.  

In statistical test planning, it must also be determined how the choice of 
components to be tested should be made – test specimen extraction. The 
test specimen should represent an actual random test specimen, which 
means that the components to be tested are chosen at random. Only then is 
the fundamental condition for a representative test specimen fulfilled. 

Another important point in statistical test planning involves establishing 
a suitable test strategy. Possible strategies include: 

• complete tests, 
• incomplete (censored) tests and 
• strategies for shortening test times. 

The best statistical option is a complete test, in which all components of 
a test specimen are subjected to a lifetime test. This means that the test is 
run until the last element has failed. Thus, failure times for all elements are 
available for further assessment.   

In order to reduce the time and effort involved in a test stand, it is rea-
sonable to carry out incomplete tests, also known as censored tests. Here 
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the test only is carried out until a certain predetermined lifetime or until a 
certain number of failed components has been reached. Such tests are not 
as meaningful as complete tests, but are often connected with a considera-
bly lower time and effort at the test stand. 

Another option for a considerably shorter test time is the Sudden Death 
Test and tests with an increased load. A detailed description of procedures 
for test planning can be found in Chapter 8. 

In the following text, the fundamental assessment of complete tests will 
be discussed. 

6.2 Order Statistics and their Distributions 

The assessment of failure times, which will be dealt with in the follow-
ing sections, has to do with the distribution of order statistics. In order to 
understand the procedure of an assessment, it is very necessary to obtain a 
basic knowledge of the origin and meaning of order statistic distributions. 
However, the derivation of order statistic distributions is quite complicated 
concerning probability theory. Thus, this section is for those who are inter-
ested in understanding the exact relationships of these distributions. How-
ever, this section can be skipped if the reader is only interested in the as-
sessment of failure times. 

Determining F(t) of the Failed Components 
The failure times of components or systems can be acquired out of life-

time tests or damage statistics. For an assessment with a probability graph, 
only the abscissa values of the individual failures with these failure times 
are available but not the ordinate values. Therefore, each failure must be 
assigned a certain failure probability F(t). The following example should 
illustrate this more clearly: 

A test specimen was tested with n = 30 components: 

 
The test resulted in 30 different lifetime values ti, which were ordered 

according to their respective value: 

t1, t2, t3, … t29, t30;     ti < ti+1;  

for example:  

t1 = 100,000 load cycles, … t5 = 400,000 load cy-
 

component 30 . . . . . . . . . . . component 2component 1 

cles, … t30 = 3,000,000 load cycles. 
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These ordered values are called order statistics. The index corresponds 
to the rank. 

After the failure of the first order statistic, 1/30 of the test specimen has 
failed, with the second order statistic, 2/30, etc. From this point of view it 
is possible to assign the first order statistic a failure probability of 
F(t) = 1/30 = 3.3%, the second order statistic, F(t) = 6.7%, etc. With this 
method, the failure behaviour of the tested components can be represented 
in the form of a summation frequency or of an empirical distribution func-
tion, see Figure 2.10. 

Here, it should be noted that the failure times of only one test specimen 
are taken into consideration. Of course, another test specimen of the same 
size returns somewhat varying result values, 

for example: t1 = 120,000 load cycles, ... t5 = 350,000 load cycles, ... 
t30 = 2,500,000 load cycles.  

The matrix structure in Figure 6.2 is the result of m test specimens. 
 

order statistic
rank

t1,2

t1,m

i=1 i=n

t2,1

t2,2

i=2

tn,2

tn,1

tn,mt2,m

t1,1
. . . .

. . . .

. .
 . 

. .
 . 

. .
 .

. .
 . 

. .
 . 

. .
 .

. .
 . 

. .
 . 

. .
 .

. . . .

1 test specimen of size n

2 test specimen of size n

m test specimen of size n

f(t)

ϕ(ti)

st

nd

th

 
Figure 6.2. Order statistics for m test specimens of the size n 

The failure time of an order statistic (any one column in Figure 6.2) var-
ies within a certain range. An order statistic can thus be understood as a 
random variable, to which a distribution can be assigned. As opposed to 
the lifetime distributions, the density function for order statistics is signi-
fied by φ(ti). 

The mathematical derivation of the order statistic distribution leads to 
a multinomial distribution (trinomial distribution), which represents an 
enhanced binomial distribution [6.2,  6.6,  6.7,  6.8]. The order statistic 
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[ ] in
ii

i
ii tFtftFt −− −⋅⋅=ϕ )(1)()()( 1 . (6.1) 

 
Range 1 Range 2 Range 3

0

dt

ti - 0.5 dt ti + 0.5 dt

8ti
 

Figure 6.3. Division of the time axis into three sections for the derivation of the 
multinomial distribution  

The limit of Equation (6.1) for dt → 0 gives the density function of the 
order statistics. Since it is possible that each component can land in any of 
the three sections, several combinations must be taken into consideration. 

[ ] in
ii

i
ii tFtftF

ini
nt −− −⋅⋅

−−
=ϕ )(1)()(

)!(  !1  )!1(
!)( 1  (6.2) 

As already mentioned, f(ti) and F(ti) are the density function and failure 
probability of the original distribution at the point ti respectively. 

Figure 6.4 shows the graphical representation of Equation (6.2) on be-
half of an example. A two parametric Weibull distribution with the pa-
rameters b = 1.5 and T = 1 was used as the original distribution. In Figure 
6.4 it is observed that the order statistics’ failure times deviate within a 
certain time period with various probabilities. For example, the 5th order 
statistic ranges between 0.1 and 0.7, where the failure time 0.3 (median) 
occurs the most. The extreme values 0.1 and 0.7, however, only occur with 
a relatively low probability. Since the Weibull distribution with b = 1.5 

distribution can be theoretically developed similar to the development of 
the binomial distribution. The initial step in the derivation is the population 
of components with the known failure functions f(t) or F(t). A test speci-
men made up of n components is chosen out of this population. The order 
statistic i is observed, which lies in section 2 at the time ti in Figure 6.3. 
The probability that the failure time falls in section 2 for one component is 
f(ti)dt, F(ti-0,5dt) for section 1 and (1-F(ti+0,5dt)) for section 3. After all 
test specimen trials have run, the order statistic i lies in section 2, while  
(i-1) failures can be found in section 1 and (n-i) in section 3. Thus, for all 
test specimen trials of this one test specimen, the probability that a certain 
component fails during section 2 in Figure 6.3 is: 



www.manaraa.com

6.2 Order Statistics and their Distributions      197 

assumes lower values with increasing time, the density function φ(ti) be-
comes less steep with an increasing rank. 

 

i = 5

i = 10

i = 15

i = 20

i = 25

2.52.01.51.00.50
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5

de
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 fu
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n 
φ 30

(t i)

failure time t  
Figure 6.4. Density functions for order statistic i in a test specimen of the size n = 
30 (original distribution: two parametric Weibull distribution with b = 1.5 and T = 
1)  

For the previous considerations, the distribution of the failure times 
must be known. Normally, however, this is not the case in most assess-
ments, but rather the failure functions of the failure times must first be 
determined. The desired failure probabilities for the failure times assume 
values between 0 and 1. None of the order statistics should be favoured so 
that they are uniformly assigned failure probabilities from 0 to 1. Carrying 
out a transformation has been efficacious: 

10        ,)()( <<== uuuFtF i , (6.3) 

10                      ,1)( <<= uuf . (6.4) 

The Equations (6.3) and (6.4) describe a rectangular distribution, which 
fulfils the conditions listed: The distribution function is defined within the 
range of 0…1 and the order statistics can be regarded equally in the con-
stant density function. Therefore, the order statistics are distributed equally 
within the interval 0…1, 
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By substituting Equations (6.3) and (6.4) into Equation (6.2), the desired 
density function for the failure probabilities of orders is acquired: 

ini
n uu

ini
nu −− −⋅⋅

−−
=ϕ )1(

)!( )!1(
!)( 1 . (6.5) 

The Equation (6.5) corresponds to a beta distribution with the beta vari-
able u and parameters a and b, where a = i and b = n-i+1[6.6, 6.7]. 

The expressions in Equation (6.5) can be seen graphically in Figure 6.5.  
Figure 6.5 shows the density function with the beta variable u in a Weibull 
probability chart for the case represented in Figure 6.4. Because of Equa-
tion (6.3), the beta variable u can be interpreted as the failure probability 
F(ti). Figure 6.5 shows very clearly that the failure probability F(ti) as-
signed to the order statistic i deviates within a certain range with this 
range’s given density. The 25th order statistic, for example, must be as-
signed a failure probability of about 60% to 98%. In most cases, the mode, 
75%, would be an adequate value, whereas the extreme values would only 
be suitable for the 25th failure time in very seldom cases. 
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Figure 6.5. Density functions with the beta variable u for the case shown in Figure 
6.4 

For the analysis of failure times it is often attempted to assign a failure 
probability to each failure time and then to draw a straight line through the 
coordinates entered into the Weibull probability chart. Thus, it is necessary 
to choose the most adequate value from the range of dispersion for the 
failure probability. One of the three averages: mean, median or mode, 
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prove to be suitable estimate values. The value of these averages can be 
determined from the density function φ(u) or the beta distribution: 

mean: 
1+

=
n

i     um ; (6.6) 

median: 
40
30
.n
.iumedian +

−
≈ ; (6.7) 

mode: 
1
1   

−
−

=
n
iumode . (6.8) 

The median possesses no close-ended solution. Thus, Equation (6.7) is 
an approximation. More exact values for the median can be found in the 
appendix in Table A.2. 

Now, the question is which of the three means should be taken as an es-
timate for the failure probability F(ti). However, on closer examination it 
can be discovered that none of the three values has an advantage in com-
parison to the others. The values do not differ substantially for large values 
of n, nor for order statistics i next to 1 or n.   

In practice, the median umedian is used the most often.  In some cases the 
simplest option, the mean um, is also used. Thus, failure probabilities can 
be assigned to the failure times ti. 

1
)(

+
=

n
itF i  (mean) or (6.9) 

40
30
.n
.i)t(F i +

−
≈  (median) (6.10) 

For example, for i = 25, the median is F(t25) = 81.3%, see Figure 6.6. It 
can be expected in 50% of the cases that the actual assigned failure prob-
ability is larger than 81.3%. For all other cases the values lie under 81.3%. 

The ideal case is present when a straight line can be drawn through the 
coordinates (ti, F(ti)), also known as the Weibull line, see Figure 6.6. 
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Figure 6.6. Density functions for order statistic failure probabilities with the me-
dian values and the Weibull line  

Confidence Intervals 
The assignment of failure times to an exact average is often not com-

pletely satisfying, since the failure probabilities of the order statistics can 
deviate within a certain range. The Weibull line is thus only one possibility 
to describe experimental results. If the median is used to determine F(ti), 
then the Weibull line represents the line for which 50% of the cases, the 
experimental results, lie above this line and 50% of the experimental re-
sults lie below the Weibull line. If it is necessary to know within which 
range the actual line can be expected to lie, that is, how much the Weibull 
line can be trusted, then it is necessary to determine the so-called confi-
dence interval for the Weibull line. A confidence interval is characterized 
as the probability that a random value lies within a certain range. For ex-
ample, a 90% confidence interval implies that in 90 out of 100 cases, the 
observed value falls within this certain interval. Figure 6.7 shows such 
90% confidence intervals for the order statistics. 
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Figure 6.7. Density functions of the order statistic failure probabilities and their 
90% confidence intervals  

The limiting values of the confidence intervals can be calculated from 
the integral of the density function in Equation (6.5). An approximation 
equation for these limiting values can be found in [6.10]. Normally, tables 
are used in order to draw in the coordinates for the confidence limits in a 
graph. Tables A.1 and A.3 in the appendix give the values for the 5% and 
95% confidence limits. The range between these confidence limits corre-
sponds to a 90% confidence interval. 

For the example shown in Figure 6.7, the limit failure probabilities are 
F(t25)5% = 68.1% and F(t25)95% = 90.9% for i = 25. 

By joining the limit points of the various order statistics, the limit curves 
of the confidence interval over the entire failure time can be acquired, see 
Figure 6.7. 

Figure 6.8 shows the representation in Weibull probability graph paper.  
The Weibull line of the median values and the confidence intervals can be 
interpreted as follows: Over an observation of several test specimens, the 
Weibull line drawn in Figure 6.8 is the most probable in the middle. The 
line in the middle represents the population mean – observed over several 
test specimens – thus 50% of the cases lie above and 50% lie below this 
line. 
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Figure 6.8. Weibull probability graph paper for the example in Figure 6.7  

However, for a certain test specimen it is possible that the line assumes 
an arbitrary position within the confidence interval, see Figure 6.9. The 
probability that the failure results lie outside of the confidence intervals is 
only 10%. This means that the confidence interval is unreliable in only one 
out of ten cases. 

Observing the confidence intervals is especially significant for small test 
specimen sizes, since then the confidence intervals can cover a very large 
range. With an increasing test specimen size n, the range covered by the 
confidence intervals becomes thinner and in certain circumstances can be 
completely neglected for n > 50...100. 
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Figure 6.9. Weibull probability paper with Weibull lines for various test specimen 
sizes within the 90% confidence interval  

6.3 Graphical Analysis of Failure Times  

Explained parallel to an example the individual graphical analysis steps 
can be more clearly explained and the procedure can be transferred to a 
concrete practical example. 

Gear wheel pitting or dimpling observed within the realms of a research 
project will serve as an example for this section [6.5]. A total of n = 10 
gear wheels were tested under a stress of σH = 1528 N/mm2. The failure 
times for the gear wheels are given in one million load cycles in the fol-
lowing order of occurrence: 

15.1;  12.2;  17.3;  14.3;  7.9;  18.2;  24.6;  13.5;  10.0; 30.5.  

Knowledge concerning the order statistics and their distributions, see 
Section 6.2, can be useful for the graphical analysis and is helpful for an 
exact understanding of this analysis. The analysis steps given in the fol-
lowing sections however are setup and explained in such a way that the 
analysis can be carried out without exact knowledge of the order statistics. 
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6.3.1 Determination of the Weibull Lines (two parametric 
Weibull Distribution)  

Step 1.1: Order the failure times according to increasing value  

t1 < t2 ... < tn    or    ti < ti+1 ;          i = 1...n. (6.11) 

By ordering the failure times, an overview is won over the timely pro-
gression of the failure times. In addition, the ordered failure times are re-
quired in the next analysis step and are referred to as order statistics. Their 
index corresponds to their rank. 

The following order statistics resulted from the test run (in one million 
load cycles): 

t1 = 7.9; t2 = 10.0; t3 = 12.2; t4 = 13.5; t5 = 14.3; 

t6 = 15.1; t7 = 17.3; t8 = 18.2; t9 = 24.6; t10 = 30.5. 
 

Step 1.2: Determine the failure probability F(ti) of the individual 
order statistics: 

40
30
.n
.i)t(F i +

−
≈ . (6.12) 

It is also possible to use the exacter values from Table A.2 (see appen-
dix).  

The order statistics ti from step 1.1 are thus assigned to the failure prob-
abilities F(ti). Since order statistics are seen as random variables, they pos-
sess a certain distribution. Equation (6.12) corresponds to the median of 
this distribution, see Section 6.2. 

The calculated failure probabilities for this example are listed in the 
chart below: 
F(t1) = 6.7%; F(t2) = 16.3%; F(t3) = 25.9%; F(t4) = 35.6%; F(t5) = 45.2%; 

F(t6) = 54.8%; F(t7) = 64.4%; F(t8) = 74.1%; F(t9) = 83.7%; F(t10) = 93.3%. 
 

Step 1.3: Enter the coordinates (ti, F(ti)) in the Weibull probability 
chart.  

The failure time ti corresponds to the x-coordinate value and the respec-
tive failure probability F(ti) corresponds to the y-coordinate value to be 
entered into the probability chart. 

Figure 6.10 shows the coordinates for this example drawn in Weibull 
probability chart. 
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Figure 6.10. Failed gear wheels (coordinates (ti, F(ti))) depicted  in Weibull prob-
ability chart  

Step 1.4: Approximately sketch the best fit straight line through the 
entered points and determine the Weibull parameters T and 
b. 

Characteristic  
lifetime T: 

Intersection of the 63.2% line with the best fit 
straight line.  

Shape parameter b: Shift the best fit straight line parallel through the 
pole P and read the shape parameter b from the right 
ordinate in the Weibull probability chart.  
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Figure 6.11. Best fit line and determination of the parameters T and b  

The best fit line and the determination of the parameters T and b are de-
picted in Figure 6.11. The failure behaviour of the gear wheels can thus be 
most suitably described with the following Weibull distribution: 

72

6 LW 10811

.
t

e)t(F
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅
−

−= . 
(6.13) 

In certain cases, the failure behaviour must be described with two or 
three approximation lines, see Figure 6.12. For such a mixed distribution a 
separate Weibull distribution must be determined for each line. The total 
failure behaviour is then given as a combination of the individual damage 
types [6.11]. 
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Figure 6.12. Mix distribution of a failed clutch (2 damage types: burnt clutch / 
worn down clutch) 

6.3.2 Consideration of Confidence Intervals  

If it is possible to test several test specimens of the same size from one 
machine element series, then the order statistic i will always be somewhat 
different. Thus, the order statistic must be seen as a random variable, 
which possesses a distribution, see Section 6.2. 

Therefore, the Weibull line determined in Section 6.3.1 represents an 
“average” Weibull line, which in most cases is a mean approximation for 
the failure behaviour. Due to the deviating behaviour of the order statistics, 
it is possible that the position of the Weibull line for various test specimens 
can alter within a certain interval. This deviating behaviour can be taken 
into account with so-called “confidence intervals”, see Section 6.2. With 
these confidence intervals it is possible to gain information concerning the 
entire population from just one test specimen, see Figure 6.1. 

A confidence interval is characterized by the probability that a random 
variable lies within a certain interval. A 90% confidence interval, for ex-
ample, indicates that 90 out of 100 cases observed lie within this interval.  
A 90% confidence interval is limited by a 5% and 95% confidence limit. 
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The determination of confidence limits and the confidence interval is 
shown in the next analysis step. 

Step 2: Determine failure probabilities F(ti)5% and F(ti)95% with 
Tables A.1 and A.3 in the appendix and enter the coordi-
nates into the Weibull probability chart.  Draw in the lines 
through all F(ti)5% and F(ti)95% coordinates respectively. 
The best fit lines represent the 5% and the 95% confidence 
limits.  The region between the confidence limits is the 
90% confidence interval.  

The following values resulted out of the gear wheel test:  
Table 6.1. Median values and confidence intervals  

i ti F(ti)5% F(ti)50% 
(median) 

F(ti)95% 

1 7.9 0.5 % 6.7 % 25.9 % 
2 10.0 3.7 % 16.3 % 39.4 % 
3 12.2 8.7 % 25.9 % 50.7 % 
4 13.5 15.0 % 35.6 % 60.8 % 
5 14.3 22.2 % 45.2 % 69.7 % 
6 15.1 30.4 % 54.8 % 77.8 % 
7 17.3 39.3 % 64.4 % 85.0 % 
8 18.2 49.3 % 74.1 % 91.3 % 
9 24.6 60.6 % 83.7 % 96.3 % 

10 30.5 74.1 % 93.3 % 99.5 % 

The confidence interval can either be determined by the median distri-
bution Weibull line or directly from the individual coordinates, so that the 
confidence interval is respectively either a curved-based or a coordinate-
based interval. 

In Figure 6.13, F(ti)5% and F(ti)95% are drawn in the Weibull probability 
chart as circles determined by the coordinates. By connecting all the cir-
cles for the different order statistics with an approximation curve, it is pos-
sible to acquire the limit curves of the confidence limits for the total failure 
time. The region between these confidence limits is the 90% confidence 
interval. 
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Figure 6.13. Weibull line and the 90% confidence interval  
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Figure 6.14. Confidence interval with minimal and maximal values for T and b  
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The Weibull line of the median values and the confidence interval can 
be interpreted as follows: When observed for several test specimens, the 
Weibull line drawn in Figure 6.13 in the middle is the mean result or esti-
mation. 50% of the cases lie above this line and 50% lie below the Weibull 
line. However, it is possible that for an arbitrary test specimen, the position 
of the Weibull line lies within the confidence interval but not along the 
median values. The probability that the failure results lie outside of the 
confidence interval is only 10%. This means that in only one out of ten 
cases the confidence interval cannot be trusted. The minimal and maximal 
values for the parameters T and b for a 90% confidence interval are shown 
in Figure 6.14. A graphical analysis of the test results produces the follow-
ing parameters for the two parametric Weibull distribution: 

Tmin = 15 · 106 load 
                      cycles; 

Tmedian = 18 · 106 load 
                          cycles;

Tmax = 23 · 106 load 
                      cycles; 

bmin = 1.5; bmedian = 2.7; bmax = 3.7; 
Confidence Interval: 90% 

The range of dispersion for the characteristic lifetime and the shape pa-
rameter can also be calculated with simple approximation equations [6.10].  
In this way, the second analysis step can be omitted. 

The approximation equations for the characteristic lifetimes Tmin and 
Tmax are as follows: 

medianb

median%min n
.

n
TTT

3

5 9
16451

9
11

−

⎟
⎟
⎠

⎞
⎜
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⎝

⎛
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⎛
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(Tmedian: corresponds to the characteristic lifetime T determined in Figure 
6.11.) 

The range of dispersion for the shape parameter can be approximately 
determined by the following equations: 

n
.
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≈= , 

(6.16) 
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⎞
⎜
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n
.bbb median%max
41195  (6.17) 

(bmedian: corresponds to the shape parameter b determined in Figure 6.11). 
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Observing the confidence interval is especially significant for small test 
specimen sizes, since then the confidence intervals can cover a very large 
range. For cases with only few test results, the confidence interval can be 
seen as a measurement for the desired parameters. With an increasing test 
specimen size n, the range covered by the confidence intervals becomes 
thinner and can only be completely neglected for n > 50...100. 

6.3.3 Consideration of the Failure Free Time t0 (three 
parametric Weibull Distribution) 

If a failure free time t0 exists, then the test yields coordinates that no 
longer lie along a straight line in the Weibull probability paper but rather 
along a bent convex curve, see Section 2.3.3. 

Step 3.1: Check whether the coordinates in the Weibull probability 
paper can be better approximated linearly (best fit straight 
line) or nonlinearly (approximation curve).  An approxima-
tion curve indicates a three parametric Weibull distribution 
with a failure free time t0.  The failure free time t0 can ei-
ther be determined with the graphical procedure described 
in the following section or more exactly with the analytical 
methods in Section 6.6.  

Figure 6.15 shows the example that an approximation curve is a good 
estimation for a function describing the test result coordinates. Therefore, a 
three parametric Weibull distribution should be determined. 

The occurrence of a failure free time t0 can have several causes [6.1].  
The most important causes are: 

• Principally, no failure can occur before the time t0. For example, before 
damage can occur on a brake disk, the brake lining must be worn down. 

• A time shift occurs between production, delivery and operation of a 
product. 

• The development and expansion of damage requires a certain amount of 
time, for example, the development of pittings or dimpling during a gear 
wheel test first occurs after cracks begin to form and spread. 

An approximate determination of the failure free time t0 can be acquired 
graphically. A simple estimation of t0 is determined by extending the ap-
proximation curve to the x-axis as seen in Figure 6.15. The failure free 
time t0 can be taken within a certain range in front of the point of intersec-
tion of the approximation curve with the abscissa, see Figure 6.15. The 
best approximation for the parameter t0 has been won when the corrected 
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failure times 0ttt ii −=′  display a straight line in the Weibull probability 
paper. 
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Figure 6.15. Approximation curve or a three parametric Weibull distribution 
through the test result coordinates (compare with Figure 6.10 and Figure 6.11) 

Step 3.2: Transform the approximation curve into a Weibull line.  
For this it is necessary to transform the failure times: 

0ttt ii −=′ .  The best approximation for t0 is obtained if a 
straight Weibull line can be laid through the coordinates 
( ))(, ii tFt ′′ . 

The most suitable failure free time t0 can only be determined iteratively.  
It is necessary to try out various values for t0. The best value in the gear 
wheel test comes out to t0 = 6 million load cycles, see Figure 6.16. 

The parameters of the Weibull line in Figure 6.16 can be determined 
with step 1.3. The characteristic lifetime comes to T = 18 million load cy-
cles and the shape parameter to b = 1.6, see Figure 6.16. (The shape pa-
rameter b differs for a two parametric or a three parametric assessment, see 
Chapter 7). 
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Figure 6.16. “Weibull line” for the failure times corrected with t0  

The failure behaviour of gear wheels can thus be described by the fol-
lowing three parametric Weibull distribution: 

61
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(6.18) 

The failure free time t0 can also be approximately calculated with a pro-
cedure from Dubey [6.3]. This procedure is relatively simple and can be 
applied with little time. It can be described as follows: 

• An approximation curve is drawn through the test results in the Weibull 
probability paper, see Figure 6.17. 

• The ordinate (y-axis) is divided into two equal portions ∆ and the corre-
sponding lifetimes t1, t2 and t3 are determined. 

• The failure times t1, t2 and t3, determined in Figure 6.17, determine the 
failure free time t0 as follows: 

)()(
)()(

1223

1223
20 tttt

tttt
tt

−−−
−⋅−

−= . (6.19) 
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Figure 6.17. Determination of the failure free time according to Dubey [6.3]  

Step 3.3: Determine the confidence intervals for the three parametric 
Weibull distribution for the corrected Weibull line as in 
step 2 (see Figure 6.16). 

Figure 6.18 shows the 90% confidence interval for this example. The 
following values for the parameters result for the three parametric Weibull 
distribution: 

Tmin = 13 · 106 load  
                      cycles; 

Tmedian = 18 · 106 load 
                          cycles;

Tmax = 25 · 106 load  
                     cycles; 

bmin = 0.8; bmedian = 1.6; bmax = 2.5; 
t0 = 6 million load cycles; 
Confidence interval: 90%. 

 



www.manaraa.com

6.4 Assessment of Incomplete (Censored) Data      215 

%
99.9 4.0

sh
ap

e 
pa

ra
m

et
er

 b
1 100

lifetime (t-t0)·106 LC

Pol

90.0

63.2
50.0
30.0
20.0

10.0

5.0
3.0
2.0
1.0

0.5
0.3
0.2
0.1

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.1

Tmax-t0Tmin-t0

10

fa
ilu

re
 p

ro
ba

bi
lit

y 
F(

t)

 
Figure 6.18. Confidence interval for the “Weibull line” and the distribution pa-
rameters 

Due to the small test specimen size of the example test chosen, n = 10, 
no definite decision can be made between a two or a three parametric 
Weibull distribution. Both distribution types could present a possible solu-
tion after analysis is carried out. A three parametric Weibull distribution 
should only be used if it is known or assumed that a failure free time ex-
ists. For all other cases the failure behaviour description should be limited 
to a two parametric Weibull distribution since it offers a more conservative 
description. 

6.4 Assessment of Incomplete (Censored) Data  

As described in Section 6.1, the time and effort involved in testing can 
be significantly reduced by incomplete tests or by strategies for test run 
duration reduction. Several such often used procedures and methods will 
be introduced in this section. An overview of the procedures for the as-
sessment of incomplete (censored) data can be found in Table 6.1. 
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Table 6.2. Overview of procedures for the assessment of incomplete (censored) 
data  

Type of 
Data 

Type of 
Censore Description Procedure see Sec-

tion 
Com-
plete 
Data 
r = n 

No censor-
ing All units have failed 

Median Procedure 

ni
.n
.iFi )1(1
40
30

=∀
+
−

≈
6.3 

 
Censoring 
Type I or  
Type II 

Lifetime characteristics 
(e.g. run times) of all 
intact units are larger 
than the lifetime char-
acteristics of the unit r 
which failed last  

Median Procedure 

ri
.n
.iFi )1(1
40
30

=∀
+
−

≈  
6.4.1 

 

Lifetime characteristics 
of intact units are 
unknown  

Sudden Death 
Test 

6.4.3 

Lifetime characteristics 
of intact units are 
known  

Procedure for the Con-
sideration of Unoc-
cured Events (assess-
ment under variable 
conditions) – Johnson 
or VDA Procedure 

6.4.3.2 

 
 
 
 
 
 
Incom-
plete 
Data 
r < n 

Multiple 
Censoring 

Information about 
intact units available in 
the form of an “opera-
tional performance 
distribution“  

Procedure for the Con-
sideration of Unoc-
cured Events out of the 
Test Route  

6.4.3.3 

Variables: 
r = number of failures 
n = test specimen size 
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6.4.1 Censoring Type I and Type II 

If, for example, a test stand trial is interrupted before all n test units have 
failed, then an “incomplete test specimen size” is produced. If the interrup-
tion (trial stop) occurs after a given time, then one is dealing with censor-
ing of type I, see Figure 6.19 where “x” indicates a failure. Object numbers 
4 and 5 endure until the end of the trial without failure. Thus, only the 
failure times for r < n test units are known in this case. The only thing 
known concerning the remaining n - r “survivors” is that they are still in-
tact after interruption of the trial. The amount r of failures is a random 
variable, which is unknown before the trial begins. 
 

te
st

 u
ni

t n
o.

time (or lifetime attribute)

1

4
3

5
6

2

×

×
×

×1

4
3

5
6

2

×

×
×

×
 

Figure 6.19. Schematic of type I censoring  

If a trial is interrupted after a given amount of test units r has failed, 
then one is dealing with censoring of type II, see Figure 6.20. The trial is 
stopped after 4 failures. The object numbers 3 and 4 endure until the end of 
the trial without failure. In this case, the point in time at which the failure r 
occurs is a random variable, thus leaving the entire trial time length open 
until the end of the trial. 
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Figure 6.20. Schematic of type II censoring 

In both of these cases (censoring of type I and II) it is impossible to 
carry through an evaluation as described in the previous Section 6.3.  
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There the cumulative frequencies were calculated according to an ap-
proximation equation in order to enter the failure behaviour in Weibull 
probability chart: 

40
30)(
.n
.itF j +

−
≈       for i = 1, 2, ... , r.  

The fact that n - r test units have not failed is taken into account by substi-
tuting r for n in the denominator of the approximation equation. 

For the evaluation of test runs with type I or II censoring it is often nec-
essary to estimate the characteristic lifetime T in the Weibull chart by ex-
trapolating the best fit line beyond the point in time of the last failure. This 
is generally problematic as long as further failure mechanisms cannot be 
neglected. In case of doubt, a statistical statement concerning the failure 
behaviour can only be made based on the shortest and longest observed 
lifetime (see the following proof). 

Proof for Extrapolation in the Weibull Chart 
The following proof can be generalized to the following statement: 

Complete as well as incomplete test specimens allow for the evaluation of 
information about the failure behaviour in Weibull chart, as long as the 
information is limited between the lowest and highest value of the lifetime 
characteristic. 

As soon as no more information is available below the lowest value or 
above the highest value, it is generally problematic to extrapolate the en-
tered coordinates (neither above nor below). 

Example: Censoring of Type I or Type II 

Population:     n = 6 
Number of failures:  r = 4  ( )tnr f→  

Failure Probability:  ri
.n
.itFF ii )1(1
40
30)( =∀

+
−

≈=  

Rank i 1 2 3 4 5 6 
Order Statistic ti 900 1300 1900 2300 ? ? 
Failure Prob. Fi 10.94% 26.26% 42.19% 57.81%   
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Graphic (Weibull chart): 
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Figure 6.21. Example for extrapolating in Weibull chart  

6.4.2 Multiple Censored Data 

In lifetime tests it is often the case that the test objects must be removed 
from the trial before failure. Contrary to type I censoring, where the sur-
viving test units are all removed from the trial at the same (predetermined) 
point in time, it is possible that the “removal” can occur at varying (ran-
dom) points in time (multiple censored data), see Figure 6.22 where “x” 
indicates a failure. The arrow implies that the object remained intact ac-
cording to the failure mechanism observed up until the point of its removal 
from the trial. 

Such a case is especially common if products should be tested under the 
failure mode A (e.g. failure of an electronic component), but the failure 
occurs because of the failure mode B (e.g. due to a mechanical defect). 
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Figure 6.22. Schematic for the visualization of multiple censored data  

6.4.3 Sudden Death Test 

In a Sudden Death Test, a test specimen is divided into m inspection lots 
of the same size, Figure 6.23. For example, if a test specimen consists of n 
= 30 components it is possible to divide it into m = 6 inspection lots of the 
same size, each consisting of k = 5 components: 
 

1 . . . . . . . . . . . . test specimen:

inspection lot 1:

inspection lot 2:

inspection lot 3:
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Figure 6.23. Breakdown of the test specimen into inspection lots in a Sudden 
Death Test  

 The components of each inspection lot are tested simultaneously until 
the first component fails. In order to achieve this, several trial stands are 
necessary (as in example 5) or the trials must be carried out in intervals 
(e.g. each component is tested for x hours). After one test component has 
failed, the remaining components of the inspection lot are not tested 
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Afterwards, the failure times are ordered in increasing value: 

or   2518214278 TTTTTT tttttt <<<<<  (6.20) 

654321 tttttt <<<<< . (6.21) 

The following assessment can be executed in two ways. In the first pro-
cedure, each determined failure time is assigned a hypothetical rank, which 
considers the undamaged components. The shortest failure time tT8 in 
Equation (6.20) also corresponds to the shortest failure time in the total test 
specimen. However, the second shortest failure time tT27 is not necessarily 
the second shortest failure time in the total test specimen. It is quite possi-
ble that in the inspection lot 2 that after the failure time tT8, the next com-
ponent fails after a time that is shorter than tT27. The determined hypotheti-
cal rank takes such a phenomenon into consideration. The corrected 
average rank can be calculated as follows: 

The average rank j(tj) is equal to the previous rank j(tj-1) plus the incre-
mental growth N(tj): 

)()()( 1 jjj tNtjtj += − ;       0)0( =j . (6.22) 

The incremental growth N(tj) is: 

parts) remaining of(number  1
)(1

  )( 1-j
j +

+
=

tj-n
tN . (6.23) 

The number of remaining parts refers to the number of still remaining 
test units including the currently regarded failed unit. Thus, N(tj) can also 
be determined as: 

parts) previous ofnumber ( 1
)(1

( 1

-n
tj-n

  tN j-
j +

+
=) . (6.24) 

Seen on the basis of an example: 

j1 = j0 + N1;    j0 = 0;       N1 = 
0301
0130

−+
−+  = 

31
31  = 1.0 

j1 = 0 + 1.0 = 1.0 

j2 = j1 + N2;    j1 = 1.0;    N2 = 
5301
0,1130

−+
−+  = 

26
30  = 1.15 

j2 = 1.0 + 1.15 = 2.15 

further. Thus, the result is the running time of the first failed component 
for each inspection lot, Figure 6.23, right. 
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j3 = j2 + N3;    j2 = 2.15;  N3 = 
10301
152130

−+
−+ .  = 

21
8528.  = 1.37 

j3 = 2.15 + 1.37 = 3.52 
etc. 

The calculation of the failure probability is carried out with the knowl-
edge from Equation (6.10) for the median of the order statistics: 

.
.n

.tj
tF j

j 40
30)(

)(
+

−
≈  (6.25) 

The further procedure for the assessment of the failure times reflects a 
normal assessment in Weibull probability chart.  

A second assessment procedure can be carried out directly with the help 
from the Weibull chart. As in the previous procedure, the lifetime values 
are ordered according to increasing value, Equation (6.21), and are entered 
in Weibull probability paper. Each of the first failures is assigned the me-
dian of the order statistics, Figure 6.24, where m is the number of inspec-
tion lots. 

40
30)(
.m
.itF i +

−
≈  (6.26) 

A straight line results in the probability paper for the failures. The the-
ory tells us that the slope of a line, that is the shape parameter b in a 
Weibull function, is the same for a part of a test specimen as for the total 
test specimen. This implies that the slope of the first failures also corre-
sponds to the shape parameter of the total distribution, and can thus be 
determined in this way. For an exact representation of the failure behav-
iour, the line must be shifted to the right. The dimension of this shift is 
won from the fact that the first failure of an inspection lot can be assigned 
a failure probability of F1* = 0.7 / (k + 0.4) and that a representative value 
for the first failure is taken to be the median (50% value) of the determined 
first failures. A vertical line is drawn from the intersection of the 50% line 
with the straight line of the first failures, whose intersection with the F1* 
line of the first failure represents a point on the straight line for the total 
distribution. The straight line of the first failures must now only be shifted 
parallel through this point, Figure 6.24. In the example above, with k = 5, 
F1* = 12,9%. 
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Figure 6.24. Graphical assessment of a Sudden Death Test 

6.4.3.1 Application of “Sudden Death Testing” in field tests, 
when no information is given concerning intact parts  

The Sudden Death Test assessment can also be applied in field tests, by 
dividing all delivered machines into equally large inspection lots [6.4, 
6.12, 6.14]. The number of inspection lots is determined out of the sum of 
failures plus one. This ensures that the faultless units with run times 
shorter than the first failure are taken into account. The size of the inspec-
tion lot is determined as follows: 

1
1

+
+

−
=

f

f

n
nn

k . (6.27) 

Here, k is the size of the inspection lot, n is the number of all delivered 
machines at the observed point in time and nf  is the number of machines 
which have failed. The assessment can be carried out as given above. 

In the following example, the Sudden Death Test assessment will be 
shown on behalf of an example. 
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n  = 4800 parts in one production month that have been delivered to 
customers  

fn  = 16 failed parts with their respective lengths of run time  

which are:  

1ft  = 1,500 km with (cumulative frequency: 4.2% from Table A.2 for 

n = 16) 
2ft  = 2,300 km 3ft  = 2,800 km 4ft  = 3,400 km 5ft  = 3,900 km 

6ft  = 4,200 km 7ft  = 4,800 km 8ft  = 5,000 km 9ft  = 5,300 km 

10ft  = 5,500 km 11ft  = 6,200 km 12ft  = 7,000 km 13ft  = 7,600 km 

14ft  = 8,000 km 15ft  = 9,000 km   

16ft  = 11,000 km (cumulative frequency: 95.8% from Table A.2 for 
n = 16) 

The component set k (the inspection lot size) is calculated as 

1
1

+
+

−
=

f

f

n
nn

k . (6.28) 

Note: The simpler equation 
1+

=
fn
nk  is also sufficient and leads ap-

proximately to the same result. For example above this yields: 

142811
17

47841
116
164800

+=+=+
+
−

= .k  ⇒  282≈k .  

Thus, there are 281 intact components between each failure, that is, be-
fore the first failure, between the first and second, second and third … and 
after the 16th failure. The number of undamaged components: 

∑ −⋅= )1()( kmtns  with 17=m  and 282=k ,  

⇒  ∑ = 4777)(tns ,  

in comparison to the exact values: 4800 – 16 = 4784.  

The total population is estimated at: 

kmnkmn f ⋅=+−⋅= )1(  with 17=m  and 
282=k , 

 

Given: 
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⇒  4793=n   

or exactly: 4800. 
 

At the same time it is assumed that nothing is known about the 281 
components until the first failure, so that undetermined cases must be as-
sumed. 

As done in the previous section, here each first failure is represented by 

the median rank %.%
.k
. 250100
40
301

=⋅
+
−  for 282=k in the total popula-

tion of n = 4800 parts. 
The line for the total failure distribution for the 4800 components can be 

determined by drawing a vertical line from the intersection of the 50% line 
with the “straight line for the first failures”. From the intersection of the 
0.25% line with the vertical line a new line is drawn parallel to the 
“straight line of the first failures”. The result is the straight line for the total 
failure distribution sought for, see Figure 6.25. 
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Figure 6.25. Total failure behaviour for the Sudden Death Testing  
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6.4.3.2 Individually Known Data of Damaged and Undamaged 
Components – Test Specimen  

Principally, the procedure described in Section 6.4 can also be used for 
cases with variable conditions, if it is not possible to build equally large 
inspection lots which are tested under similar conditions [6.13]. For this 
assessment procedure the value of the lifetime characteristic must be 
known for the undamaged components.  

The following example describes the calculation of the failure distribu-
tion for the case that the lifetime characteristic of the undamaged compo-
nents is known. 

The assessment below shows the calculation of the failure distribution 
for the case that the lifetime characteristics of damaged and undamaged 
components are known [6.13]. 

The following data is given: 
50=n  test specimen size with  
12=fn  damaged and 

38=sn  undamaged components. 
The corresponding run times [km · 103] for the damaged components f 

and undamaged components s are sorted according to increasing value: 
 

;40
1

=st  ;51
2

=st  ;54
1

=ft  ;55
2

=ft ;58
3

=st  ;59
4

=st  ;59
5

=st  

;60
3

=ft  ;60
6

=st  ;61
4

=ft  ;62
7

=st  ;63
5

=ft  ;65
6

=ft ;66
8

=st  

;66
9

=st  ;67
7

=ft  ;70
8

=ft  ;70
10

=st ;70
11

=st ;70
12

=st ;70
13

=st  

;71
9

=ft  ;72
14

=st  ;72
15

=st ;72
16

=st ;72
17

=st ;72
18

=st ;73
19

=st  

;73
20

=st  ;73
21

=st  ;74
22

=st ;75
10

=ft ;77
23

=st ;78
24

=st ;78
25

=st  

;79
26

=st  ;80
27

=st  ;81
28

=st ;81
29

=st ;82
30

=st ;82
31

=st ;83
32

=st  

;84
11

=ft  ;85
33

=st  ;86
34

=st ;86
35

=st ;88
36

=st ;91
12

=ft ;92
37

=st  

.92
38

=st        

 The pre-sorted run time values are sequentially assigned to one an-
other, the undamaged component run times are assigned to the damaged 
run times, Table 6.3. The procedure is to note the value of an undamaged 
component in the line of the next highest value for a damaged component 
if its value is less. If the value of the undamaged component is the same as 
the damaged component then they are noted in the same line. The same 
also applies for several undamaged components. 

After this sub step of allocation, a final overview is prepared in a table 
of the damaged and undamaged components, Table 6.3. 
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Table 6.3. Sub step for the allocation (grouping the run time values) [6.13] 

Ordinal 
Number 

j 

Lifetime charac-
teristics in increas-

ing order 
tj [km · 103] 

 
damaged

 
undamaged 

Number of previ-
ous components 

 40  X  
 51  X  

1 54 X  2 
2 55 X  3 
 58  X  
 59  X  
 59  X  

3 60 X  7 
 60  X  

4 61 X  9 
 62  X  

5 63 X  11 

 

. 

. 

. 
etc. 

. 

. 

. 
etc. 

. 

. 

. 
etc. 

 

 The undamaged component values ts37 and ts38 can not be assigned to 
damaged components because corresponding similar or larger values of 
damaged components do not exist. However, these values are taken into 
account by calculating with n = 50 and not (!) with n = 48. 

The next steps encompass the calculation of the average ordinal number 
and thus that of the median rank. Here, the calculation procedure is only 
discussed for the first steps. The complete calculation can be carried out 
analogue to the steps in the previous sections. 
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Calculation of the Average Ordinal Number j(tj) 
The average ordinal number j(tj) is equal to the previous ordinal number 

j(tj-1) plus the number of failures nf(tj) times the growth N(tj)  

)]()([)()( 1 jjfjj tNtntjtj ⋅+= − , (6.29) 

components remaining ofnumber 1
)(1

)( 1

+

−+
= −j

j
tjn

tN . (6.30) 

The number of remaining parts is the difference between the test speci-
men size and the number of all previous components including the compo-
nent currently regarded, see also Table 6.3: 

)components previous(1
)(1

)( 1

−+

−+
= −

n
tjn

tN j
j . (6.31) 

For the example – where coincidentally nf(tj) is always equal to 1 – one 
can find:  
    00 =j  

   101 Njj +=  with 041
49
51

)250(1
0150

1 .N ==
−+
−+

= . (6.32) 

04104101 ..j =+=  

212 Njj +=  with 041
48

9549
3501
041150

2 ..
)(

.N ==
−+

−+
=  

0820410412 ...j =+=  

323 Njj +=  with 111
44

9248
7501
082150

3 ..
)(

.N ==
−+

−+
=  

1931110823 ...j =+=  
etc. 124 jj K . 

Calculation of the Median Ranks F(tj) [%] 
For the calculation of the median ranks the approximation equation is 

used: 

%
.n

.tj
tF j

jmedian 100
40

30)(
)( ⋅

+

−
≈ . (6.33) 
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The numerical values for this example are:  

%.%
.
..%

.n
.jtFmedian 471100

4050
30041100

40
30)( 1

1 =⋅
+
−

=⋅
+
−

≈  

%.%
.
..%

.n
.jtFmedian 533100

4050
30042100

40
30)( 2

2 =⋅
+
−

=⋅
+
−

≈  

%.%
.
..%

.n
.jtFmedian 735100

4050
30193100

40
30)( 3

3 =⋅
+
−

=⋅
+
−

≈  

etc. )t(F)tF medianmedian 124( K . 
 
The following table includes several calculated values.  

Table 6.4. Assessment results [6.13] 

    Calculation 

Ordi-
nal 
No.  

j 

Lifetime 
character-
istics in 

increasing 
order 

[km ·103] 
tj 

Number 
of dam-

aged parts
)( jf tn  

Number 
of un-

damaged 
parts

)( js tn  

Num-
ber of 
previ-
ous 

parts 

Growth
 

)( jtN  

Mean 
ordinal 
number 

)( jtj  

Median 
rank [%] 

)( jmedian tF
 

1 54 1 2 2 1.04 1.04 1.47 
2 55 1  3 1.04 2.08 3.53 
3 60 1 3 7 1.11 3.19 5.73 
4 61 1 1 9 1.14 4.33 7.99 
5 63 1 1 11 1.16 5.49 10.31 
6 65 1  12 1.17 6.66 12.62 
7 67 1 2 15 1.23 7.89 15.07 
8 70 1  16 1.23 9.12 17.51 
9 71 1 4 21 1.40 10.52 20.28 

10 75 1 9 31 2.02 12.54 24.30 
11 84 1 10 42 4.28 16.82 32.77 
12 91 1 4 47 8.54 25.36 49.73 

 >91  2     
  12)( =tn f 38)( =tns

    

  50=n      
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The calculated median ranks Fmedian(tj) together with the lifetime values 
tj build the coordinates of the points in the lifetime network according to 
Weibull. The Weibull best fit line represents the lifetime line, Figure 6.26. 
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Figure 6.26. Weibull diagram with individually known data for damaged and 
undamaged components  

The parameters for this example are: 

• Shape parameter      b = 6.4 
• Characteristic lifetime     T = 92  10³ km 
• Average lifetime      MTTF = 91  10³ km. 
 

It has become clear that with a relatively small test specimen size 
( 50≤n ) of damaged and undamaged components, the same result can be 
calculated as with a large test specimen size ( 360=n ) of only damaged 
components. Thus, a remarkable shortening in testing time is achieved for 
collecting data, which in turn results to less time required for the calcula-
tion and assessment of this data. 

For larger test specimens with 50≥n  (damaged and undamaged com-
ponents) it is reasonable to classify the collected data. The calculation of 
the ordinal numbers and median ranks is carried out as described above. 
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6.4.3.3 Calculation of the Failure Behaviour with Undamaged 
Parts from the Test Drive Distribution 

The procedure for this calculation will be described in this section also 
on behalf of an example. Special aspects in the collection and processing 
of data are mentioned and possible limitations of this procedure are named 
[6.13]. 

In order to estimate the failure behaviour of components and aggregates 
for the time period after the guarantee period, it is necessary to work with 
representative test specimens with damaged and undamaged components.  
The determination and statistical assignment of individual values accord-
ing to the lifetime characteristic, normally the test run in kilometres, can be 
executed without difficulty for undamaged components. 

Especially within the warranty period information concerning damaged 
components is almost complete. The only problem is information gaps for 
undamaged components. If it is possible to close these gaps then it is pos-
sible to predict a trend for long period behaviour for components and ag-
gregates relatively early. If a test run distribution exists for the vehicles in 
which the damaged components are assembled then the calculation of the 
undamaged components per test run interval is possible.   

In the following example information about the damaged components is 
complete whereas only a total number of undamaged components is 
known. The calculation of the number of undamaged components per test 
run interval is based on the test run distribution of the total test specimen 
(damaged components plus undamaged components). The individual 
groups of undamaged components are won by subtracting the number of 
damaged components from the total number per test run. 

To make things simpler it is convenient to base the test run distribution 
only on the population of undamaged components and then to calculate the 
missing values per test run. For this simplification, the number of damaged 
vehicles should be significantly smaller than the approved vehicles. This 
procedure will now be practically shown with data from the test field for a 
heavy duty vehicle component. 

Example: 
The damage cases from the warranty period are assigned to classes ac-

cording to length of run orders for licensed nauto = 3780 automobiles. 
(Table 6.5, first column) 

Since the length of run class for 20,000…24,000 km does not show any 
damages, it can be neglected for the further calculation. 

The portion of undamaged components (vehicles with no damaged 
components) is calculated into the individual length of run classes out of a 
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length of run distribution in logarithmic probability paper (Figure 6.27).  
This length of run distribution is assumed to be known. 

The upper limit of these length of run classes can be read from the 
length of run distribution. The upper limits are the corresponding ordinate 
percent values for each class. It is the sum of automobiles, which have 
reached an arbitrary length of run until the class upper limit. Here, 80% of 
the vehicles have reached a length of run of 40,000 km without any dam-
aged components. This indicates that 20% of the vehicles achieve a length 
of run greater than 40,000 km. 

The allocation base for the further calculation of the quantity of undam-
aged parts in each individual class is the number of vehicles produced 
within a certain manufacture period or the number of licensed vehicles on 
the market within a certain time period. 

The length of the period of use must be about the same for all vehicles.  
If this is not the case then a corrective calculation must be carried out. 

To ensure the case that the statistical spread of the vehicle length of runs 
at hand is lower than if an additional influence from variously long periods 
of use also comes into play. This implies that the probability for the occur-
rence of damage is the same for all vehicles with respect to the length of 
run. 

In the example, nauto = 3780 manufactured and licensed vehicles are 
given for the calculation. Out of the 3780 vehicles, nf(t) = 19 prove to 
have a damaged component. Correspondingly, ns(t) = 3761 vehicles do not 
have damaged components. 

The first length of run class for the ranked damage cases has an upper 
limit of 4,000 km. Out of the length of run distribution in Figure 
Figure 6.27 a cumulative frequency of about 0.035% can be read off for 
4,000 km. 
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Figure 6.27. Length of run distribution  

The portion of undamaged components in the class up to 4,000 km is 
equal to 0.035% of 3761 vehicles without damaged components. This is 
equal to about 1 vehicle (ns(t1)). By idealizing the length of run distribu-
tion, a certain inaccuracy occurs in the lower region of the distribution, 
which however has no effect on the final total outcome. 

The next class upper limit is 8,000 km. The corresponding cumulative 
frequency value from the length of run distribution is 1.7% for undamaged 
components (vehicles). Since the length of run distribution depicts a cumu-
lative frequency function, whereas in this procedure the percentage por-
tions of the observed class is of interest, it is necessary to subtract the cu-
mulative frequency of the previous class from each extracted value. Thus, 
for the class from 4,000 to 8,000 km a percentage portion of 1.7% -
 0.035% = 1.665% (ns(t2)).  

The remaining ns(tj) values can be calculated in the same way, 
Table 6.5. 
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Table 6.5. Determination of ns(tj) values [6.13] 

Length of Run 
[km] 

jt  

Cumulative 
Frequency [%] 

( )jtL  

Single Frequency [%]
 

( ) ( ) ( )1−−= jjj tLtLtl

Number of 
Undamaged  
Components 

( )jS tn  

... 4,000 0.035 0.035 1 

... 8,000 1.7 1.665 63 
...12,000 8.6 6.9 260 
...16,000 20.0 11.4 429 
...20,000 33.5 13.5 508 
...28,000 57.0 23.5 884 
...32,000 67.0 10.0 376 
...36,000 74.0 7.0 263 
...40,000 80.0 6.0 226 

The calculation of the failure behaviour according to the median range 
procedure is carried out using the ns(tj) values calculated above, see Table 
6.6. 

Table 6.6. Calculation of the failure behaviour according to the median rank pro-
cedure [6.13] 

   Calculations 
Length 
of Run 
[km] 

tj
 

Number of 
Damaged 
Compo-

nents 
)( jf tn  

Number of 
Undamaged 

Compo-
nents 

)( js tn  

Number 
of pre-
vious 

Compo-
nents 

Growth: 
Number 
of Dam-

aged 
Compo-

nents 
)( jtN  

Mean 
Ordi-

nal No.
)( jtj  

Median 
Rank [%] 

)t(F jmedian

 

... 4,000 5 1 1 5.00 5.00 0.12 

... 8,000 2 63 69 2.03 7.03 0.17 
...12,000 2 260 331 2.19 9.22 0.23 
...16,000 2 429 762 2.50 11.72 0.30 
...20,000 1 508 1,272 1.50 13.22 0.34 
...28,000 1 884 2,157 2.32 15.54 0.40 
...32,000 2 376 2,534 6.04 21.58 0.56 
...36,000 3 263 2,799 11.48 33.06 0.86 
...40,000 1 226 3,028 4.98 38.04 0.99 
> 40,000  751     

 19)( =tn f  3761)( =tns     

 7803,)t(nFzg =      
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The graphical assessment of Table 6.6 in Weibull probability paper 

shows that the values represent a mixed distribution, Figure 6.18.  
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Figure 6.18. Weibull diagram for a mixed distribution [6.13] 
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Figure 6.29. Weibull diagram with realistic long term data [6.13] 

The expected long term behaviour caused by wearout is represented in 
the second section of the distribution by the straight line 2. This behaviour 
has been confirmed by field data at a later point in time with long term 
data, Figure 6.29. 

By just observing the damaged components during the time of warranty, 
a completely different failure behaviour is depicted (Figure 6.18, dotted 
line 1), however it does not correctly reflect the field situation. 

With this information, the following values result for a calculation with 
one damaged component per vehicle. A summary of the required field data 
and the calculated median ranks is shown in Table 6.7: 

 
Number of vehicles         vehn   = 140 
Vehicles with one damaged component   )t(n fveh  = 10 
Vehicles without any damaged components  )t(n sveh  = 130. 
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Table 6.7. Consideration of long term data in the median range procedure [6.13] 

   Calculations 

Length of 
Run [km] 

tj
 

Number of 
Damaged 
Compo-

nents
)( jf tn  

Number of 
Undam-

aged 
Compo-

nents
)( js tn  

Number 
of Pre-
vious 

Compo-
nents 

Growth: 
Number 
of Dam-

aged 
Com-

ponents
)( jtN  

Mean 
Ordinal 
Number 

)( jtj  

Median 
Rank [%] 

)( jmedian tF
 

36110 1 42 42 1.38 1.38 0.72 
45311 1 19 62 1.68 3.06 1.83 
53,000 1 22 85 2.24 5.30 3.32 
61,125 1 9 95 2.60 7.90 5.05 
72,700 2 11 107 6.51 14.41 9.38 
75,098 2 2 111 6.83 21.24 13.92 
87,000 1 14 127 5.4 26.64 17.51 

110,000 1 16 144 17.77 44.41 29.33 
>110,000  5     

 10)( =tns  140)( =tns     
 150)( =tns      

 
Comments regarding the application of the described  
procedure:  

When preparing the warranty data, it must be assured, that the damaged 
components considered regard the first case of damage in each individual 
vehicle (first original parts). Only if this is the case, then the length of run 
and the respective values for the portion of damage have the same value. 

If the damage frequency is already too large in the warranty period, so 
that more than one case of damage per vehicles occurs (the replacement 
part is also damaged), then it must be assured that only the first failures are 
taken into account. Furthermore, if possible, then all damaged components 
should have arrived. 

6.5 Confidence Intervals for Low Summations  

When considering short application periods and short lengths of run, for 
example 1 year or 15,000 km, or when dealing with electronic and electric 
components, then the summation values run very low, mostly lower than 
10%. 
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For this low range, another procedure has proven to be more adequate 
for the determination of the confidence interval. This procedure is based 
on the determination of factors [6.13]. In this procedure, single tq values 
are specified, which are dependent upon the inspection lot size n. Confi-
dence interval factors Vq for PA = 90% (double-sided) can be taken from 
the figures to be found in the appendix. These factors are dependent upon 
the test specimen size n and the Weibull shape parameter b. For interim 
values of b, Vq must be interpolated.  

The lower lifetime limit for q percentage failure probability can be cal-
culated as follows: 

q
qqu V

tt 1
⋅= . (6.34) 

The upper lifetime limit for q percentage failure probability can be cal-
culated with the equation below: 

qqqo Vtt ⋅= . (6.35) 

By connecting the individual coordinates for upper and lower limits, the 
entire confidence level can be determined. 

Example: 
For a test specimen size of n = 100, trials are executed up until the ordi-

nal number j = 10. According to Table 6.8 tj and Fj can be assigned as fol-
lows: 

%
.n
.jFj 100
40
30

⋅
+
−

≈ . (6.36) 

Table 6.8. Assignment of t and Fj [6.13] 

j 1 2 3 4 5 6 7 8 9 10 
tj [cycle] 62 190 288 332 426 560 615 780 842 1,000 
Fj [%] 0.70 1.69 2.69 3.68 4.68 5.68 6.67 7.67 8.66 9.66 

 

The individual coordinates are transferred into a Weibull chart. Subse-
quently, a linear smoothing function is laid through the coordinates. A 
Weibull distribution with b = 1 is yielded. 
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Figure 6.30. Confidence levels for low summations  

 
The confidence interval factors Vq corresponding to b = 1 and n = 100 

are taken from the figures to be found in the appendix for t1, t3, t5 and t10, 
see Table 6.9.  

Table 6.9. Vq Factors  

q [%] tq Vq tqo = tq⋅ Vq tqu = tq/Vq 
1 96 5.0 480 19.2 
3 295 2.6 767 113.5 
5 500 2.1 1050 238.1 

10 1030 1.7 1751 606.0 

6.6 Analytical Methods for the Assessment of Reliability 
Tests  

The assessment of failure data can be carried out under various analyti-
cal methods. The most well known methods are: 
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• the Moment of Moments, 
• the Regression Analysis (Method of the Lowest Failure Squares accord-

ing to Gauß) and  
• the Maximum Likelihood Method. 

These methods will first be explained independent of a distribution.  
Their application can be depicted with an example for the Weibull distri-
bution. 

6.6.1 Method of Moments 

In the Method of Moments the best distribution is determined by com-
paring the test specimen moments with the theoretical distribution mo-
ments. Moments are certain statistical values from a distribution. The most 
well know moments are: 

• means, 
• standard deviation or variance, 
• skewness. 

One statistical value alone offers very little information about a distribu-
tion. The mean only indicates where about the middle of the distribution 
lies. Several moments together offer a exact picture of the distribution, for 
which is sought. 

With the Method of Moments only complete test specimens can be as-
sessed. The parameter estimation is carried out, by comparing empirical 
test specimen moments with the theoretical distribution moments. Empiri-
cal inspection test specimen are the statistical values of a certain test 
specimen. If n values ti , i = 1(1)n are given, then the first empirical mo-
ment for the test specimen is the mathematical mean t  

∑
=

⋅=
n

i
itn

t
1

1 . (6.37) 

The second empirical test specimen moment is either the standard devia-
tion s or the variance s2 
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Third empirical moment is referred to as skewness γ. The skewness is a 
value for the asymmetry of the distribution density: 
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. (6.39) 

Theoretical distribution moments characterize probability distributions 
with continuous random values. The first theoretical distribution moment, 
mostly referred to as the expected value E(t), can be determined by the 
improper integral of the density function f(t) multiplied with the statistical 
variable t: 

∫
∞

∞−

⋅⋅== dttftmtE )()( 1 . (6.40) 

The general definition for a moment mk to the order k with respect to the 
origin is: 

∫
∞

∞−

⋅⋅= dttftm k
k )(   ,...2,1=k  . (6.41) 

Along with origin moments, central moments mkz also exist, which can 
be defined by the following expression: 

∫
∞

∞−

⋅⋅−= dttfmtm k
kz )()( 1     ,...2,1=k  . (6.42) 

The second central moment is called variance Var(t) 
2
122)( mmmtVar z −== . (6.43) 

The skewness S3(t) is the third theoretical distribution moment, which is 
defined by the expression: 

2
2

3
3 )(

z

z

m

m
tS =  (6.44) 

By setting the empirical moments equal to the theoretical moments, a 
system of equations results, out of which it is possible to calculate the de-
termining distribution parameters: 

.tS
stVar

,ttE

γ=
=

=

)(
and)(

)(

3

2  (6.45) 
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With these three equations, the three unknown parameters can be calcu-
lated. For a one or two parametric distribution, only the first or the first 
two equations are necessary for determining the sought parameters. 

Example: Three parametric Weibull distribution 
The application of the Method of Moments for a Weibull distribution is 

complex. The theoretical moments can only be expressed with the help of 
the gamma function Γ(x). For a three parametric Weibull distribution the 
following relationships are valid for the expected value E(t), variance 
Var(t) and skewness S3(t): 

00
11)()( t
b
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⎠
⎞

⎜
⎝
⎛ +Γ⋅−= , (6.46) 
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For a two parametric distribution, t0 = 0 in the equations above.  Accord-
ing to Equation (6.39), the skewness is only a function of the shape pa-
rameter b. Since the empirical skewness γ is known out of Equation (6.38), 
b can be determined iteratively, for example with the Newton Method, with 
the assumption that γ = S3(t). If b is known, then t0 can be determined with 
the Equations (6.46) and (6.47), in connection with the mathematical mean 
t , Equation (6.37), and the standard deviation s, Equation (6.38) : 
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The last parameter, the characteristic lifetime T, is calculated out of 
Equation (6.46): 
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6.6.2 Regression Analysis 

The Regression Analysis can also be referred to as the Method of the 
Lowest Failure Squares. The determination of the distribution is carried 
out with a linear smoothing function. The sum of the squares of the inter-
vals between the coordinates (ti, F(ti)) and the linear smoothing function is 
minimized. The intervals are calculated to a general form of assumed 
straight line functions. These functions are summed together. Following, 
the known normal equations can be derived by differentiating. 

In contrast to the Method of Moments, incomplete test specimens can be 
assessed with the Regression Analysis. If incomplete test specimen r trial 
values ti, i = 1(1)r are given for a test specimen size n. The trial values are 
ordered according to increasing value so that t1 ≤ t2 ≤ ... ≤ ti ≤ ... ≤ tr. The 
ordered values are now referred to as order statistics and the respective 
index i is referred to as the rank. Next, failure probabilities Fi are assigned 
to the order statistics. An estimation for the failure probability can be de-
fined by various values related to the beta distribution with the help of the 
ranks: 

Median: 
40
30
.n
.iFi +

−
≈       ri )1(1= , (6.51) 

Mean: 
1+

=
n

iFi           ri )1(1= , (6.52) 

Mode: 
1
1

−
−

=
n
iFi           ri )1(1= . (6.53) 

These failure probabilities are then adapted to a line equation in the form 

cxmxy +⋅=)(  (6.54) 

The probability distributions in a reliability analysis can be transformed 
into a straight line equation by respectively reforming the distributions. 
After such a transformation, the variable x becomes a function of the life-
time t: 

)(txx = . (6.55) 

The slope m and the ordinate intersection factor c become functions of 
the distribution factor k 

lψ , k)1(1=l , (6.56) 

which can be summarized together to form a parameter vector:  
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),...,,...,( 1 kψψψ=ψ l
r

. (6.57) 

Since the straight line is uniquely determined by the slope and ordinate 
intersection, it is possible to define maximal two parameters with this ad-
aptation. Equation (6.54) is transformed into the equation below: 

)()()())(( ψ+⋅ψ=
rr

ctxmtxy , (6.58) 

for which the following applies when using order statistics:  

)())(   and   )( iiii xyt(xytxx == . (6.59) 

With this transformation it is necessary to transform the failure prob-
abilities of the order statistics accordingly: 

)( ii Fyy = . (6.60) 

For the adaptation of the equation, the function value ))(( itxy is sub-
tracted from the transformed failure probabilities yi. The results of this 
subtraction are interpreted as the failure ri, Figure 6.. A total of n equations 
results in the form 

iiiii rcxmytxyFy =−⋅−=− ))(()( . (6.61) 
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y(x(t)) = m·x(t)+c

 
Figure 6.31. Line of regression 

According to Gauß, a good estimate for the variables for the lines of re-
gression sought for, m and c, can be achieved, if the failure squares sum 

2ρ is minimized: 

( ) .mincxmyr
n
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22ρ  (6.62) 
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For the minimization, the first partial derivatives of 2ρ  with respect to 
m and c are set equal to zero: 
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The result is a linear system of equations (normal equations) for the two 
unknowns m und c: 
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 (6.64) 

with which the following solutions can be found considering the mathe-
matical Equation (6.37): 
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xmyc ⋅−= . (6.66) 

Since m and c are functions of the distribution parameters, a maximum 
of two parameters can be calculated out of a reverse transformation of the 
equations above. To judge the quality of the approximation of the line, the 
correlation coefficient K is determined: 
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The correlation coefficient is a variable for the strength and direction of 
a relationship between coordinates. For a complete linear dependency the 
correlation coefficient is K = -1 or K = 1, depending upon whether the 
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coordinates change in the same direction or in the opposite direction. Such 
a case is referred to as a functional dependency. If there is no dependency 
between the coordinates, then K = 0. A stochastic dependency is at hand if 
the absolute value of the correlation coefficient lies between 0 and 1 
(0 < |K| < 1). Figure 6.32 shows the various dependency possibilities. 

The quality of the approximation of a linearly transformed distribution 
function to the coordinates can also be judged by the correlation coeffi-
cient. The closer the absolute value of K is to 1.0, the better the approxima-
tion. For the approximation of a distribution for failure data, a stochastic 
dependency always results.  
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Figure 6.32. Forming the dependency between the coordinates (x, y) and the cor-
relation coefficient K 

Example: Weibull distribution 
The origin of the Regression Analysis is the Weibull chart. Mathemati-

cally, this corresponds to the equation for the line 

( ) { { 4342144 344 21
),()()())((

)ln()ln()(1ln(ln
Tbctxbmtxy

TbtbtF ⋅−⋅=−− , 
(6.68) 

assuming the distribution to be a two parametric distribution. The trans-
formed failure probabilities can be found by using the median value, for 
example, 
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By using the Regression Analysis, the following two Weibull parame-
ters b and T can be found with the following equations: 
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and ⎟
⎠
⎞

⎜
⎝
⎛ ⋅−

−=
b

xbyT exp . (6.71) 

The correlation coefficients can be taken from Equation (6.67). If the 
distribution contains a failure free time t0 as a third parameter, then the 
calculation using the Regression Analysis is more complicated, since it 
must then be carried out iteratively. The calculation is carried out as for a 
two parametric distribution, but the measured values become 

)ln( 0ttx ii −= . This is represented as a straight line in Weibull paper, if t0 

is to be sought. The quality of this approximation can again be judged by 
the value of the correlation coefficient, Equation (6.67). Thus, with a tar-
geted variation of the parameter t0 a maximum for the correlation coeffi-
cient can be determined. The iteration is done with the help the Golden 
Section Search algorithm [6.9]. 

6.6.3 Maximum Likelihood Method  

One very good statistical method for the determination of unknown pa-
rameters of a distribution is the Maximum Likelihood Method from R.A. 
Fisher. The procedure assumes that the histogram of the failure frequency 
depicts the number of failures per interval, Figure 6.33. 
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Figure 6.33. Histogram of failure frequency and density function  

For larger test specimen sizes n it is possible to derive the density func-
tion out of the histogram and thus to exchange from the frequencies to the 
probabilities (law of large numbers). In this way it is possible to state, for 
example that during the first interval in Figure 6.33, probably 3% of all 
failures will occur. In the second interval it is most likely that 45% of the 
failures occur, etc. According to theory, the probability L, that exactly the 
test specimen is at hand as given in Figure 6.33, can be found by the prod-
uct of the probabilities of the individual intervals: 

)( )( )( 21 ntftftfL ⋅⋅⋅= K . (6.72) 

This function is called the likelihood function. The idea of this proce-
dure is to find a function f, for which the product L is maximized. Here, the 
function must possess high values of the density function f in the corre-
sponding regions with several failure times ti. At the same time in regions 
with few failures, only low values of f are found. Thus, the actual failure 
behaviour is accurately represented. The function f, if determined in this 
way, offers the best probability to describe the test specimen.  

A test specimen with n observation values ti, i = 1(1)n is given, whose 
density function f(t) possesses k unknown parameters lψ , l = 1(1)k. These 
parameters are often summarized as ),...,,...,( 1 kψψψ=ψ l

r
. The likeli-

hood function for such a case is as follows: 
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Commonly, the likelihood function is logarithmized. Thus the product 
equation becomes an addition equation, which greatly simplifies the dif-
ferentiation. Since the natural log is a monotonic function, this step is 
mathematically logical. What remains is: 

( ) ( )∑
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n
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ini tftttLL
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rr
. (6.74) 

For the estimation of the k parameters ψl according to the above consid-
erations, those parameters are used for which the likelihood function 
reaches its maximum. These parameters can be found by setting the k par-
tial differentiations of the likelihood function with respect to the k parame-
ters equal to zero. The maximum of the logarithmized likelihood function 
and thus the statistically optimal parameters lψ can be found out of the 
equations: 
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These equations can be nonlinear in the parameters; therefore it is often 
useful to apply appropriate numerical procedures. Figure 6.34 schemati-
cally shows these ratios for a two parametric Weibull distribution. 
 

b

T

ln(L) = f(T,b)ln(Lopt)

Topt

bopt

ln(L)

 
Figure 6.34. Schematic representation of the logarithmized likelihood function  

Through the Likelihood function value the opportunity is given to esti-
mate the quality of the adaptation of a distribution to the failure data, even 
if the calculation is not carried out by means of the Maximum Likelihood 
Method. The greater the likelihood function value is, the better the deter-
mined distribution function describes the actual failure behaviour. It often 



www.manaraa.com

250      6 Assessment of Lifetime Tests and Failure Statistics 

seems to be confusing, that negative values result for ln(L) through the 
logarithmized transformation. A better adaptation can be recognized by 
higher absolute values of ln(L). 

Example: Weibull distribution  
In order to carry out the Maximum Likelihood Method, the failure den-

sity will be used in a different form with the parameter 0tT −=η . This 
results to a density function as seen below: 
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The logarithmized likelihood function results to:  
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The partial differentiation with respect to the parameters is as follows:  
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This system of equations is nonlinear. Therefore it must be solved itera-
tively. First, however, several transformations must take place. The newly 
introduced parameter η out of Equation (6.79) is solved for: 
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Substituting this equation into Equation (6.80) leads to:  
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The following approach has proven to be successful: 

1. Choose t0 out of the range 0 < t0 < t1. 
2. Iteratively determine the shape parameter b at the point in time t0 with 

Equation (6.82).  
3. With these two values calculate η out of Equation (6.81).  
4. With these values calculate the value for the likelihood function with 

Equation (6.77). 
5. Vary t0 and repeat from step 2 until the maximum is found.  

In order to allow a quick determination of the maximum, the method ac-
cording to Brent [6.9] is applied. 

6.7 Exercises to Assessment of Lifetime Tests  

Problem 6.1 
In a pre-production test components were tested for their lifetime.  All 
components failed.  The corresponding failure times are recorded below: 

69,000 km, 29,000 km, 24,000 km, 52,500 km, 
128,000 km, 60,000 km, 12,800 km 98,000 km. 

a) Calculate the mathematical mean, the standard deviation and the 
spread of the failure data.  

b) Determine the order statistics and assign them a failure probability. 
c) Determine the parameters for the Weibull distribution that describes 

the failure behaviour with help of the form sheet (Weibull chart). 
d) Determine the B10 lifetime and the median. 
e) With which probability can a component survive t1 = 70,000 km? 
f) Draw the 90% confidence intervals for the Weibull lines. 
g) Calculate the 90% confidence intervals for the parameters b and T. 

Determine these confidence intervals graphically.  
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Problem 6.2 
Complete failure data is given for a mechanical switch:  

470; 550; 600; 800; 1,080; 1,150; 1,450; 1,800; 2,520; 3,030 operations. 

a) Determine the parameters of the Weibull distribution graphically.  
b) Determine the B10 lifetime and the median. 
c) Draw the 90% confidence intervals of the Weibull function.  

Problem 6.3 
Lifetime values are given from torsion vibration trials of an uncensored 
test specimen of crenated drive shafts out of 41 Cr 4 with a stress ampli-
tude of 200 MPa. 

Lifetime values (in 103 load cycles):  
   264, 208, 222, 434, 382, 198, 380, 166, 435, 242.  

Assess this lifetime data using a Weibull chart and determine the 90% 
confidence interval. 

Problem 6.4 
In a test 8 similar components were tested simultaneously on a test stand.  
The test was interrupted after the failure of the fifth component.  Deter-
mine the failure behaviour of the components in a Weibull distribution, 
their 90% confidence interval and the confidence limits of the parameters. 

Failure data (in h): 192, 135, 102, 214, 167  

Problem 6.5 
An incomplete test specimen is given, where the lifetime of planet carrier-
head screws in farm tractors was recorded.  A total of 1075 tractors were 
involved.  After 10 failures due to broken head screws, an assessment 
should be carried out with the recorded data.  The running time until 
breakage of the planet carrier-head screws are given: 

99, 200, 260, 300, 340, 430, 499, 512, 654, 760.  
The running times of the intact units at the time of the assessment are un-
known. 
a) Assess the test specimen graphically with the Sudden Death procedure 

(determine the straight line for the first failures and extrapolate the 
lifetime distribution for the total test specimen). 

b) Calculate the test specimen using the Sudden Death procedure (deter-
mine the hypothetical ranks).  Compare the results with part a).  



www.manaraa.com

6.7 Exercises to Assessment of Lifetime Tests      253 

Problem 6.6 
A field study for a reliability analysis of a vehicle clutch was carried out.  
20 clutches were available for the analysis.  Up until the point of analysis 
nf = 8 clutches failed, that means that ns = 12 clutches were still functional.  
The following length of runs (in 103 km) of failed and intact clutches are 
given in the table below: 

Failed components: 7, 24, 29, 53,  60,  69,  100,  148,  
Intact components: 5, 6, 19, 32, 39, 40, 65, 70, 76, 85, 157, 160. 

a) Determine the lifetime distributions under consideration of the intact 
clutches.  

b) Determine the 90% confidence interval and the respective confidence 
limits of the parameters.  

Problem 6.7 
Warranty and amiability data of an omnibus transmission should be as-
sessed after one year.  A total of n = 178 transmissions were delivered and 
r = 7 of them have failed. 

Failure data (in km):  
   18,290; 160,770; 51,450; 89,780; 130,580; 35,200; 51,450.  

The length of run distribution for the omnibuses is described by a normal 
distribution with µ = 80,000 km and σ = 45,000 km.  Determine the 
Weibull distribution which describes the failure behaviour. 

Problem 6.8 
Information is given concerning the failure data of an uncensored test 
specimen: 42, 66, 87 and 99 h.  
a) Use the Regression Analysis to calculate the parameters b and T for 

the two parametric Weibull distribution describing the failure behav-
iour.  

b) What is the correlation coefficient?  
c) Determine the logarithmized likelihood function value.  

Problem 6.9 
Give a generally valid relationship for the estimation of the failure rate λ 
and the failure free time t0 of a two parametric form of the exponential 
distribution with the density 

( ))(exp)( 0tttf −λ−⋅λ=   

with known failure data ti, i = 1(1)n  
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b) using the Maximum Likelihood Method and 
c) using the Regression Analysis. 
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7 Weibull Parameters for Specifically Selected 
Machine Components 

The failure behaviour of some components can be determined accu-
rately by accordant extensive statistical analysis. The analysis can be car-
ried out with results of tests, data for damage statistics or with data given 
in literature. Knowledge about the failure behaviour of components en-
ables the forecasting of the expected failure behaviour of elements with 
comparable operating conditions. Also, the expected failure behaviour of 
systems can then be calculated with system theory. There is a dearth of 
published relevant contemporary information pertaining to the failure be-
haviour of mechanical components. As a consequence the Institute of Ma-
chine Components (IMA) has initiated a reliability base [7.1]. In the fol-
lowing text selected results from this data base will be shown for the 
machine components: gears, shafts and bearings, for which extensive in-
formation is available.  

While beginning to compile this reliability date base it was discovered 
that in most cases only very few failure times were available (n = 5,..., 
10,..., 20). As commonly known for all statistical methods, the significance 
of a statistical assessment increases remarkably with the amount of failed 
components. It is at least possible to estimate the dimension of the parame-
ter to be determined with a high confidence intervals if numerous results 
are at hand. 

A further problem in the set-up of the reliability data base is the fact that 
the statistical parameters b, T, t0 are dependent upon various influential 
factors: 
 

(b, T, t0)= f(shape, material, machining, stress). 

 

This means that it is possible, that each component requires special pa-
rameters depending on the case of operation. The analyzed tests and dam-
age statistics have shown, however, that the shape parameter b and the 

B. Bertsche, Reliability in Automotive and Mechanical Engineering. VDI-Buch,  
doi: 10.1007/978-3-540-34282-3_7, © Springer-Verlag Berlin Heidelberg 2008 

factor ftB = t0/B10 of a component under a certain stress level remain rela-
tively constant for the occurred type of damage. The results available 
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The statistical analyses of the reliability data base were executed with 
the calculation programs WEIBULL and SYSLEB. For the fatigue and 
wearout failures examined, a three parametric Weibull distribution was 
always used. This assumption is reinforced by new analyses in [7.2, 7.3, 
7.5]. The method used for the analysis was the Regression Analysis. The 
differences to the Method of Moments and the Maximum Likelihood 
Method have proved to be minimal in several comparisons.  

7.1 Shape Parameter b 

A summary of the determined shape parameters is shown in Figure 7.1. 
The spread of the shape parameters represents the confidence intervals of 
the statistical analysis and a dependency on the stress level. For gears and 
shafts the shape parameter b must be chosen according to the stress. For 
these components a higher stress calls for a larger shape parameter. 
 

ball bearing
roll bearing

pittings
breakage

breakage

pittings

1.1...1.9

gears

bearings

shafts

1.1
1.35

1.1...1.5
1.2...2.2

shape parameter b
0 1 2 3

 
 

Figure 7.1. Determined shape parameters b for the three parametric Weibull dis-
tribution of select machine components (for gears and shafts: higher stress → 
larger shape parameter; lower stress → smaller shape parameter) 

For the determination of the shape parameter b for shafts (type of dam-
age: crack) two very interesting tests exist: one according to Maennig [7.6] 
and another according to Kitschke [ 7.5]. Maennig calls for tests carried out 

indicate that these parameters only depend on operational demands, the 
failure mechanism and partly on the stress. Consequently, it is sufficient to 
determine the shape parameter and the factor of the failure free time only 
once out of a very extensive test or to estimate these parameters from the 
results of many tests. Thus, in many cases the parameters introduced in the 
following sections can serve as a first orientation. 

on many varying stress levels, where each test consists of n = 20 test 
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For roll bearings, extensive tests exist with up to n = 500 and provide a 
notably high statistical confidence. Furthermore, bearings are the only 
machine components for which the failure behaviour is documented in 
standards: DIN 622 and ISO DIN 281. Here, the shape parameter was de-
termined for a two parametric Weibull distribution due to the fact, that the 
failure free time of bearings is relatively small (see Section 7.2). The 
analysis with a three parametric Weibull distribution also exhibits only 
small variances. According to Bergling [7.1], the shape parameter is inde-
pendent of size, type and stress of the bearing. This simplifies the applica-
tion considerably.  

The determined and analyzed tests of gears were carried out for a rela-
tively small amount of tests (n = 5 ... 20). The dependency of the shape 
parameter upon the stress can be seen here as well. With increasing stress 
the shape parameter b also increases. For the type of damage “crack” shape 
parameters are yielded similar to the parameters for shafts (type of dam-
age: crack). For pittings, the range of dispersion of the gears is not as large 
as for cracks and the values for b are approximately in the same range as 
for pittings of roll bearing.  

The determined shape parameters range from b ≈ 1 ... 2. With a closer 
look at Figure 7.2 one can see, that the failure behaviour of all elements 
has a left symmetric distribution. Such a left symmetric distribution seems 
to be typical for the failure behaviour of classic machine components 
 

values. Thus, the dependency between the shape parameter and the stress 
can be clearly demonstrated. Maennig began his tests in the fatigue 
strength region with loads close to the fatigue strength and then increased 
the stress step by step up to the static strength. The shape parameter 
thereby increased from b = 1.1 to b =1.9. Kitschke, on the other hand, car-
ried out only a few tests with very many test values (n = 99 ... 112). Thus, 
the resulting statistical confidence is quite high. Furthermore, Kitschke 
was the only one who conducted an extensive statistical analysis, thus of-
fering an excellent example for the determination of reliability parameters. 
The shape parameters he determined for medium stress lie between b = 1.5 
and b = 1.9.  
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Figure 7.2. Density function of the Weibull distribution for b = 1.1 ... 1.9 

The shape parameters b yielded for the three parametric Weibull distri-
bution tend to be smaller than those yielded for the two parametric Weibull 
distribution. The cause for this discrepancy can be explained by Figure 7.3.  

For most tests the histogram of the density function shows a left sym-
metrical shape and the lowest failure time is the time t0. The two paramet-
ric Weibull distribution, according to its definition, must begin at t = 0 and 
attempts to describe the histogram with these conditions. Thus, this results 
in an almost symmetrical curve linearity (b ≈ 2 ... 3). 
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Figure 7.3. Histogram of a test and density distributions of the two and three 
parametric Weibull distributions 

The three parametric Weibull distribution may begin with t0 and thus of-
fers a better approximation of the histogram. Afterwards, a left symmetric 
distribution (b ≈ 1 ... 2) is yielded, whereas the shape parameter b is by 
definition smaller as for symmetric shape parameters. 
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7.2 Characteristic Lifetime T 

The characteristic lifetime T is the scale parameter of the Weibull distri-
bution and can therefore be regarded as the mean of the distribution. In-
creasing the characteristic lifetime T results in a shift of the complete fail-
ure behaviour to higher failure times.  

Whereas the shape parameter b and the factor ftB primarily depend upon 
the machine component and upon the type of damage, see Sections 7.1 and 
7.3, the characteristic lifetime T can be regarded as a function of stress. For 
all components, lower stress leads to higher failure times and the charac-
teristic lifetime T increases.  

For the prognosis of the failure behaviour the characteristic lifetime T is 
generally determined by a lifetime calculation or an operational fatigue 
strength calculation. A certain calculation method leads to a lifetime which 
is combined with an expected failure probability F(t). For example, for the 
calculation of roll bearings one yields by defining the B10 lifetime 
(F(t) = 10%) and for the calculation of gears the B1 lifetime (F(t) = 1%). 
With these lifetimes one receives one point each on the probability net, see 
Figure 7.4. The complete statistical failure behaviour can be determined 
with the additional knowledge of the shape parameter b and by the poten-
tial failure free time t0. For components, for which no secured lifetime 
calculation exists, one depends on experience (e.g. out of damage and war-
ranty statistics), estimations or tests. Out of the B1 and/or B10 lifetimes the 
corresponding characteristic lifetime T (F(t) = 63,2%) can be calculated 
with the Equations (7.1) and (7.2) 

 
The characteristic lifetime T for the determined B1 lifetime:  
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The characteristic lifetime T for the determined B10 lifetime:  
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Figure 7.4. Calculated B1 and B10 lifetime in Weibull probability paper (example) 

For the case of a Bx lifetime, the corresponding characteristic lifetime T 
is: 
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(The Equations (7.1) to (7.3) were derived from the general equations of 
the Weibull distribution). 
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Figure 7.5. Dependency of pitting load-carrying capacity and transmission cost in 
relation to the dimension 

The meaning and/or sensitivity of an exact determination of the charac-
teristic lifetime T can be shown by the example of the pitting load-carrying 
capacity of a gear in Figure 7.5. The slightest incline of the Wöhler curve, 
expressed by the exponent k = 6.25, leads to an almost doubled lifetime for 
an over-dimensioning of only 10%. For the more critical case, an under-
dimensioning of 10%, the gear already fails after half of the standard life-
time. The costs for the gear, however, only change insignificantly. In [7.2] 
it is also shown, that a change of the characteristic lifetime T has the most 
significant influence on the calculated system reliability. An appropriate 
accurate prognosis of the system lifetime can therefore only be achieved 
by a secured operational fatigue strength calculation. 
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7.3 Failure Free Time t0 and Factor ftB 

As already mentioned, the failure behaviour of the components can only 
be described accurately with a three parametric Weibull distribution for 
most fatigue and wearout failures. Especially for the calculation of the 
system lifetime, the initial range of the failure behaviour must be collected 
very accurately. This consideration makes the three parametric Weibull 
distribution with its third additional parameter – the failure free time t0 – 
absolutely necessary, see [7.2, 7.3, 7.4, 7.5].  

The failure free time t0 of fatigue and wearout failures implies that a cer-
tain time is required before damage appearance and propagation. Without 
this assumption, the failures caused by wearout, fatigue, aging etc. would 
have to appear already after short operation times. This, however, contra-
dicts general knowledge and belief.  

By executing the analysis of the data base it has proven to be useful not 
to specify the failure free time as an absolute value but rather in the form 
of the factor ftB = t0/B10. With this factor, the values are much better for 
comparison. The lifetime B10 has been taken as a reference, because it 
shows no significant discrepancies between two and three parametric 
analysis, and not to mention, it is also in the initial range of the failure 
event. The summary of the determined factors ftB is shown in Figure 7.6.   
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Figure 7.6. Factors ftB = t0/B10 for select components 

A dependency of the stress level on the factors could not been deter-
mined so far. Thus, for a conservative estimation a smaller factor should 
be chosen, whereas for an optimistic estimation a higher factor can be 
used.  

The failure free time t0 was determined in tests according to Mann, 
Scheuer and Fertig [7.7]. In this test, a significance level α was calculated 
for the period of time 0 < t0 < t1. Because t0 and the lifetime B10 are statistical 
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With the extensive tests from Kitschke [7.5] for shafts (type of damage: 
“crack”) the nearly compulsory statistical proof could be executed, that 
there has to be a failure free time t0. Interestingly enough, for roll bearings 
rather small values were yielded for the factor ftB. For gears with pittings as 
the type of damage, only large ranges of failure free times could be deter-
mined. In analyzing further tests it should be possible to narrow this range 
down. For gears with “crack” as the type of damage, similar values were 
yielded as for shafts, with the same type of damage 
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8 Methods for Reliability Test Planning 

This chapter deals with the main principles and procedures of planning 
lifetime tests. Planning lifetime tests can be divided into statistical test 
planning and experimental-technical measurement planning, see Chapter 6. 
Common principles of correct test execution are valid for the latter of the 
two [8.3, 8.4, 8.8, 8.11, 8.12].   

The size of the test specimen is the first aspect of statistical test planning 
and is closely related to the confidence intervals and the statistical spread 
of experimental values, see Section 6.3. The less components are tested, 
the greater the confidence interval is and the results of a statistical analysis 
become more uncertain. Thus, for a more precise result it is necessary that 
enough machine components are tested. This, however, can greatly 
increase the time and effort involved in testing. 

Furthermore, a suitable test strategy must be defined for statistical test 
planning. One differentiates between the various possibilities of: 

• complete tests, 
• incomplete (censored) tests and 
• strategies for test time shortening. 

The best statistical option is the complete test, where all machine 
components of a random test specimen are subjected to a lifetime test.  The 
test is run until the last element has failed. The result is that the failure 
times of all elements are available for analysis. 

In order to reduce the time and effort of testing, it may prove to be 
beneficial to carry out an incomplete test, which is also sometimes called a 
censored test. In this case, the test is run until a predetermined lifetime is 
reached or until a certain number of elements have failed. This type of test 
is not as meaningful and exact as a complete test but is associated with a 
considerably lower test effort. 

Sudden Death Tests and tests with an increased load offer further 
possibilities for a significant shortening of the test time. Section 6.4 deals 

B. Bertsche, Reliability in Automotive and Mechanical Engineering. VDI-Buch,  
doi: 10.1007/978-3-540-34282-3_8, © Springer-Verlag Berlin Heidelberg 2008 

How and which machine components should be tested, referred to as test 
specimen extraction, must also be determined for statistical test planning. The 
test specimen should represent a real random test specimen, which implies that 
the components tested are determined at random. Only then is the fundamental 
condition for a representative random test specimen fulfilled. 
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with the evaluation of incomplete tests and with strategies for shortening 
of test time in detail. 

The fundamental task of test planning is to certify the achievement of the 
required reliability, which is given by the reliability demands of: 

• the number of units to be tested (n = ?) and  
• the required test duration (ttest = ?)  

 
A minimal reliability at a certain lifetime is a common problem 

specifications in the practical field, for example, a required reliability of 
e.g. R(200,000 km) = 90%, which corresponds to a B10 lifetime of 200,000 
km. Additionally, a confidence level is determined (e.g. 95%, 90% or 
80%), with which the reliability requirement can be proven. Often, it is 
common that no failure is expected during a test run.  This type of test is 
called a “success run”. Furthermore, cost and time conditions can be set. 
 

This chapter will deal with life time tests: 
 

• Statistical test planning, 
• Measurement planning, 
• In statistical planning greater confidence when larger number of tests 

considered, 
• Discrimination in machine selection for test planning, 
• Sudden death tests are considered. 

8.1 Test Planning Based on the Weibull Distribution   

An example is observed with a product requirement of R(t) = 90% with a 
one-sided confidence level of PA = 95%. The conditions are illustrated in a 
Weibull chart in Figure 8.1.  

Example: 
A reliability of R(200,000 km) = 90% is required with a confidence level 

of PA = 95%. Out of the 95% confidence level table one searches for the 
column which offers a lower failure probability as the previously required 
failure probability of F(200,000 km) = 10% for i = 1. This is the case for 
n = 29. This situation is shown in a Weibull chart in Figure 8.2. 

One can now make the following statement: if n = 29 test units reach a 
test time t = 200,000 km without failure, then R(t) = 90% with a certainty / 
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probability of 95%. A universal procedure based on the binomial 
distribution will now be introduced. 
 

t

lifetime t·102 LC

point to verify

Weibull line of the test

95% - confidence limit

location depends 
on: n, b, T, t0

F(t)

103 104100101

%
99.9

90.0

63.2
50.0
30.0
20.0

10.0

5.0
3.0
2.0
1.0
0.5
0.3
0.2

0.1

fa
ilu

re
 p

ro
ba

bi
lit

y 
F(

t)

 
Figure 8.1. Test planning with the Weibull distribution 
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Figure 8.2. Example of test planning with the Weibull distribution 

8.2 Test Planning Based on the Binomial Distribution 

Here, we would like to begin with the observation of n test units.  If the 
test units are identical, then they will all exhibit the same reliability R(t), 
Figure 8.3. 

At the time t, the reliabilities R1(t), R2(t), R3(t), …, Rn(t) with Ri(t) = R(t) 
are valid for each individual test units. For the probability that all n test 
units survive until time t, one uses the product law of probabilities R(t)n. 

 
1 2 3 n........

n test units with distribution R(t)  
Figure 8.3. Starting point for test planning with the binomial distribution  

If no failure can be observed while testing a random test specimen of the 
size n until the time t, which represents the required lifetime, and if R(t) is 
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the survival probability of the tested object, then the probability, that all n 
units tests will survive until the time t, is equal to R(t)n. In other words, the 
probability, that at least one failure can be observed until the point in time 
t, is PA = 1–R(t)n. 

The inversion of this consideration allows one to say, that if no failure 
has occurred during a test of a random test specimen of the size n until the 
time t, then the minimal reliability of a test unit is equal to R(t) with a 
confidence level of PA. This can be seen in the following equation: 

n
A

n
A )P()R(t)t(RP

1

1or   1 −=−= . (8.1) 

In literature and in the practical field, Equation (8.1) is often referred to 
as “success run”. 

Example: 
The following reliability requirement is given: R(200.000 km) = 90%.  

The verification should have a confidence level of PA = 95%. The required 
random test specimen size can be attained by reforming the above 
equation: 

( )
( ) 428

90
05011

1

.
).ln(
).ln(n

)t(Rln
Plnn)P()t(R An

A ==⇒
−

=⇔−= .  

Here, it is common to use diagrams. Figure 8.4 shows an example of a 
minimal reliability R(t) as a function of the random test specimen size n for 
various confidence levels PA, in the case that until the point in time t no 
failures have occurred (success run). 
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Figure 8.4. Minimal reliability R(t) as a function of the test specimen size n and 
the confidence level PA, if at the point in time t no failure has occurred 
(success run) 

8.3 Lifetime Ratio 

In this section, the effect of increasing or decreasing the test duration of 
the required test specimen size is observed. According to Weibull, 

( )bTttR )/(exp)( −= . If a test runs until the time ttest ≠ t, then 
( )b

testtest )T/t(exp)t(R −= .  Hence after simplification: 

b
V

b
testtest L
t

t
))t(Rln(
))t(Rln(

=⎟
⎠
⎞

⎜
⎝
⎛= , (8.2) 

which results to )t(R)t(R test
Lb

V = .  
The ratio of the test duration ttest to the required lifetime t is signified as 

the lifetime ratio LV. 

t
t

L test
V =  (8.3) 

If a failure free time is present, then 
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00
0
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= . (8.4) 

Substituting the lifetime ratio in Equation (8.1) results to:  

nL
A

b
VPtR ⋅−=

1

)1()( . 
(8.5) 

Therefore, for a constant reliability R(t) and confidence level PA, an 
increase in the test duration ttest leads to a decrease in the required test 
specimen size n and vice versa, see Figure 8.5 and Figure 8.6. 

Diagrams and Examples: 
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Figure 8.5. Reliability as a function of the lifetime ratio and test specimen size 
[8.2] 
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Figure 8.6. Confidence level as a function of the lifetime ratio and test specimen 
size [8.12] 

Example 1: Verification of the reliability goal – determination of 
test duration and the test specimen size [8.2] 
Given: 

Budget for a lifetime test of 40,000 km without failure of a product; 
assumed shape parameter: b = 2.0. 

Problem: 
What is the number of test units required for the most effective and 

economical type of test execution in order to guarantee a reliability of 
R = 80% and a confidence level of PA = 80%? 

Solution: 
There are two ways to solve this problem: with the given information 

b = 2.0 and R = 80%, the diagram in Figure 8.5 is used and with the 
information PA = 80%, the diagram in Figure 8.6 is applied. Both solutions 
yield the same result. 

Determination of LV:  
Beginning on the y-axis at either R or PA = 80%, one moves towards the 

right until intersecting an n-curve. In both diagrams, the value 
perpendicular to the abscissa from the intersection point corresponds to the 
lifetime ratio LV.  

Result: 
The most cost-efficient test is a test with one test unit (one unit, one trial, 

one person), thus n = 1. The perpendicular on the abscissa to the 80% 
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intersection point with the n = 1 curve is the corresponding lifetime ratio 
LV = 2.7. For this test (n = 1) the test duration is 
2.7 · 40,000 km = 108,000 km. The most cost-efficient test for the 
achievement of the required reliability goal (R and PA ≥ 80 %) is realized 
with one trial (n = 1) over a test duration of 108,000 km. 

 

Example 2: Reliability test [8.2]  
The decision for a certain cost-efficient reliability test needs to be 

founded. 

Given: 

• Three test specimens 
• Budget for a test completion at 120,000 km  
• Required minimal lifetime: 40,000 km 
• Estimated shape parameter: b = 2,0 
• Required confidence level: PA = 80%. 

Problem: 
What type of test execution is required: 

a) testing one unit for a total of 120,000 km or 
b) testing three units each for 40,000 km (a total of 120,000)? 

Solution: 
Diagram, Figure 8.5 (with b = 2.0 and PA = 80%) 

a) Test with one unit (n = 1) over 120,000 km; lifetime ratio 
LV = 120,000 / 40,000 = 3. According to Figure 8.5, the reliability is 
R = 83.6% for LV = 3 and n = 1. 

b) Test with three units over 40,000 km; LV = 1; n = 3; R = 58.5%.  

Result: 
Since the time and effort involved in total kilometres tested is the same 

for both tests, the procedure with the highest minimal reliability is given 
preference: execution of the test with one unit (n = 1) over 120,000 km.  
The achieved reliability is R = 83.6%. 

Note: 
It is also possible to assume a constant value for the reliability and to 

determine the confidence level with Figure 8.6. In this case the higher 
confidence level would have been the deciding factor for achieving the set 
goal. 



www.manaraa.com

Example 3: Determination of the reliability [8.2] 
How to determine the reliability, if one unit is taken out of the test before 

reaching the desired lifetime: 

Given: 
A test is run with the goal to verify a reliability of R = 80% and a 

confidence level of PA = 80%. This test requires that one unit is tested 
without failing until 2.7 times the desired lifetime. However, the unit was 
taken out of the test after 1.1 times the targeted lifetime. A Weibull shape 
parameter of b = 2.0 is assumed. 

Problem: 
How long does a second unit have to be tested without failure in order to 

verify the original reliability requirement of R ≥ 80%? 

Solution: 
Out of Figure 8.5 (b = 2.0 and PA = 80%) the number of required tests is 

found to be n = 6 in order to achieve a reliability of R = 80% with a 
lifetime ratio of LV = 1.1. Since one unit has already been tested with 
LV = 1.1, 5 further tests are required for which LV ≥ 1.1. Five tests with 
LV = 1.1 correspond to the reliability statement of one test with LV = 2.45. 

The reliability requirement of R ≥ 80% is fulfilled, if after the first unit is 
taken out of the test at LV = 1.1, a further unit is successfully tested until 
2.45 times of the required lifetime are reached. 

8.4 Generalization for Failures during a Test 

In general, the binomial law is valid for the confidence level:  
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i
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P
0

)())(1(1 . (8.6) 

Here, x is the number of failures during a time span t and n is the test 
specimen size. If one failure occurs during the test at the point in time t, 
then 

1)())(1()(1 −⋅−⋅−−= nn
A tRtRntRP . (8.7) 

For this application, the use of diagrams has proved to be helpful.  Figure 
8.7 shows a Larson nomogram as an example (see for example [8.12]). A 
test specimen size of n = 20 elements is entered where x = 2 test units have 
failed during the test duration t. In order to determine the achieved 
reliability with a confidence level of PA = 90%, a line is drawn starting at 
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PA = 0.9 going through the point (n = 20; x = 2) and the reliability can be 
read from the diagram at the intersection of this line with the R curves. The 
reliability R(t) at the test duration is equal to 75% with a confidence level 
of 90%. 
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Figure 8.7. Larson nomogram 

8.5 Consideration of Prior Information 

The Bayesian law for the consideration of prior information can be used 
for the reduction of the required test specimen size n. Prior information is 
considered in the form of the a-priori distribution density with the density 

(Bayesians-Method) 
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f(ϑ). For a certain event A, the probability P(A|ϑ) is considered with the 
unknown parameter ϑ. If it is known that ϑ is distributed according to the 
density f(ϑ), then the a-posteriori distribution density is produced under 
consideration of prior information according to Bayesian law: 

∫
∞

∞−

ϑ⋅ϑ⋅ϑ

ϑ⋅ϑ
=ϑ

dfAP

fAPAf

)()|(

)()|()|( . 
(8.8) 

With this density the confidence intervals can be calculated by 
integration: 

∫ ϑ⋅ϑ=≤ϑ≤
b

a

dAfbaP )|()( . (8.9) 

For a success run, if R is a probability value (by the rectangular 
distribution 0 ≤ R ≤ 1) available as prior information, then the test 
specimen size can be reduced by one test unit (n + 1 instead of n in the 
exponent) when using the Bayesian method:  
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Further references concerning this topic can be found in [8.6]. 
The difficulty for further application of the Bayesian method is the 

formation of the a-priori distribution. 

8.5.1 Procedure from Beyer/Lauster 

On practical approach to solve this problem stems from Beyer/Lauster 
[8.2]. Prior information concerning the reliability at the time t is regarded 
with a value R0 which has confidence level of 63.2%. According to [8.2], 
under the consideration of prior information for Weibull distributed failure 
behaviours, one yields the following relationship for the confidence level: 
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Here, b stands for the Weibull shape parameter and x stands for the 
number of failures until the time t. If no failures are allowed (success run), 
which implies x = 0, then 
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Solving this equation for the required test specimen size results to: 
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This means that the required test specimen size can be reduced by 
considering the prior information R0 by 

)/1ln(
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Here again, the used of nomograms can prove to be helpful, Figure 8.8. 

Example: 
For the release of an aggregate, a lifetime test should be conducted. A 

lifetime of B10 = 20,000 h is required, which is equal to R(20,000 h) = 0.9. 
The following knowledge has been gathered from previous comparable 

models: 

• R0 = 0.9 (with 63.2% confidence level) and 
• shape parameter b = 2. 

The verification should be proceeded with PA = 85% and n = 5 test units.  
According to Figure 8.8, the lifetime ratio is Lv = 1.25 and thus the test 
duration is ttest = 25,000 h (line ). 

The following statements can be made when analyzing the nomogram in 
Figure 8.8. 

• If no prior information is considered, then n = 10 test units must be 
tested (with Lv = 1.25) (line ).  

• If one aggregate fails, then the test specimen size increases to n = 14 
(likewise with Lv = 1.25, line ). 
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Figure 8.8. Nomogram from Beyer/Lauster [8.2] 

8.5.2 Procedure from Kleyner et al. 

A second procedure for the consideration of prior information was 
suggested by Kleyner et al. [8.5]. A mixture between a rectangular 
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distribution and a beta distribution is used for the a-priori distribution. The 
proportion of each distribution is weighted with the “knowledge factor” ρ. 
If little is known regarding R, then many units must be tested in order to be 
able to make a reliable statement. In [8.5], field data is used from an older 
product in order to estimate a pre-distribution. This is the objective part of 
the procedure. The subjective part of the procedure comes into play with 
the estimation of the similarity between the new and old product. This is 
done by estimating a value for the “knowledge factor” ρ. No similarity, 
which implies no transferability of information from the old product onto 
the new product, is indicated by ρ = 0. The larger ρ becomes, the more 
similar the new and old products and the lower the necessary test specimen 
size will be. For ρ = 1, the a-priori distribution corresponds exactly to the 
beta distribution without any rectangular distribution influence. This 
indicates very good prior information of R and it is understandable that the 
necessary test specimen size then becomes relatively small. This subjective 
estimation of ρ is the main objective of the Kleyner method. 

 In [8.5], the execution of the calculation of this method is given. Under 
the assumption that no failures occur during the tests, the a-posteriori 
density can be calculated according to [8.5] with the application of the 
Bayesian law. 
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By integrating Equation (8.11), the confidence level is found: 

∫ ⋅=
1
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R

A dRRfP . (8.16) 

The estimated “knowledge factor” ρ must remain within the interval 
0 ≤ ρ ≤ 1. A and B are parameters for the beta distribution, which can be 
determined out of failure data for previous products. 

The common density function for the beta distribution is as follows: 
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Here, Γ (..) is the Euler gamma function. The a-priori distribution is 
gained with the “knowledge factor” out of the beta and rectangular 
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distributions. Under the application of Bayesian law, the a-posteriori 
distribution is obtained according to Equation (8.15). 
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Figure 8.9. Beta density and distribution function of R with A = 25, B = 3 

Normally, the reliability R and the confidence level PA are already given. 
If A and B are known, then the only unknown variable is the test specimen 
size n. This can be numerically calculated by the integral or simply read 
from the diagram. 

Figure 8.9 shows a beta density function with the parameters A = 25 and 
B = 3 and the corresponding beta distribution function of R. The mean 
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(median) of this beta distribution is located at a reliability of 
Rmedian = 90.22%. 

Example: 
Figure 8.10 represents the confidence level PA as a function of the 

necessary test specimen size n for various knowledge factors (ρ = 0; 
ρ = 0,1; ρ = 0,2; ρ = 0,4; ρ = 0,6; ρ = 0,8; ρ = 1) and for the success run 
according to Equation (8.1). The required reliability is R(ttest) = 0.9. The 
corresponding beta distribution for the a-priori density has the parameters 
A = 25 and B = 3, see Figure 8.9. The parameters were determined from a 
previous test. A reduction of n for an increasing ρ can be clearly seen in 
Figure 8.10. 

 

0%
10%
20%
30%
40%
50%

60%
70%
80%
90%

100%

0 5 10 15 20 25 30
test specimen n

co
nf

id
en

ce
 le

ve
l P

A

ρ = 1
ρ = 0.8
ρ = 0.6
ρ = 0.4
ρ = 0.2
ρ = 0.1
ρ = 0
Success Run

 
Figure 8.10. Confidence level PA as a function of the necessary test specimen size 
for various knowledge factor values ρ with a reliability of R = 90% 

Figure 8.11 shows the required number of test units only as a function of 
the knowledge factor. The confidence level as well as the reliability was 
set at 90%. This corresponds to values which are often prescribed in the 
practical field. If 22 test units are required for a success run, then the test 
specimen size can be reduced to seven units if the previous information is 
assumed to be correct (ρ = 1). For ρ = 0, the Kleyner et al. method is a pure 
rectangular distribution and the test specimen size can be reduced by one 
unit. 
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Figure 8.11. Necessary test specimen size n as a function of the knowledge factor 
ρ with a confidence level PA of 90 % and a reliability R of 90%  

A detailed description of the mathematics involved in this topic can be 
found in [8.7]. 

Another method is introduced in [8.6]. This method describes reliability 
information with the beta distribution and is simpler as the procedure from 
Kleyner et al. in regards to the difficulty of the calculation required. Prior 
information is transmitted with the so-called transformation factor. With 
the introduction of time-acceleration factors it is possible to use 
information acquired from an accelerated test to reduce the test specimen 
size. Furthermore, with the lifetime ratio, other tests with deviating test 
durations can be used to verify the lifetime. 

8.6 Accelerated Lifetime Tests 

This section deals with methods in which the lifetime under “normal” 
loads can be verified from the results from trials run under high load 
levels. This is achieved with physically founded models [8.12]. 

Logically, such a conclusion is only valid under the assumption that no 
changes in the failure mechanism are caused by a load increase. One 
special case of these tests is where the load is increased in predetermined 
increments (step stress test). 

Trials for fatigue lifetime make up a second special case. Here, the 
endurance strength limit should be determined (Wöhler curve). 
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8.6.1 Time-Acceleration Factor 

One practical procedure consists in recording load profiles during a test 
run under realistic operation conditions. Out of these profiles time or 
distance proportions are determined or operation or use frequencies 
(histograms) are developed. Finally, by extrapolating these histograms, the 
lifetime can be verified. Reproducing the load on test rigs with increased 
loads (using a physical model) results in a time-acceleration factor 
corresponding to the underlying model [8.12]. 

With the increased load, greater damage occurs during the trials than 
would occur under real operational conditions. This in turn leads to lower 
lifetimes. 

The relationship between the lifetime under normal operation conditions 
and the lifetime in an accelerated test is described by the time-acceleration 
factor AF: 

acct
tAF = . (8.18) 

In Equation (8.18) it is assumed that the failure probability for both 
lifetimes is the same. 

With accelerated tests it is possible to reduce the test duration by the 
time-acceleration factor. This is shown in the following example.  

Example  (“Understanding Accelerated Life-Testing Analysis” 
by Pantelis Vassiliou, from RAMS 2001 - Tutorial Notes): 

In this example it is examined which failure behaviour results for a paper 
clip which is bent back and forth to a certain angle.  

 
front view side view bending up

αα

 
Figure 8.12. Paper clip and bending angle 

In this experiment 6 paper clips are bent to different angles: 45°, 90° and 
180°. The failure times given in load cycles are summarized in Table 8.1 
(1 load cycle = paper clip is bent once to an angle α and brought back to its 
original position). 
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Table 8.1. Paper clip experiment results 

No. α = 45° α = 90° α = 180° 
1 58 16 4 
2 63 17 5 
3 65 18 5 
4 72 21 5.5 
5 78 22 6 
6 86 23 6.5 

 
Figure 8.13 represents the Weibull lines for the different bending angles. 

Almost all Weibull distributions possess the same shape parameter, which 
means that the failure mechanism for paper clips does not change for these 
bending angles. Based on the characteristic lifetime, the time-acceleration 
factor for a bending angle of 180° is (in relation to a bend angle of  45°): 

13
725
8574

180

45
180 ===

°

°
° .

.
t
tAF   

By testing paper clips with a bending angle of 180°, the test length can 
be reduced by a time-acceleration factor of 13 in comparison to a test with 
the bending angle 45°. 

The time-acceleration factor for a bending angle of 90° (based on a 
bending angle of 45°) is: 

63
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The paper clip test with a bending angle of 90° results to a test duration 
reduction by a time-acceleration factor 3.6. 
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Figure 8.13. Failure distributions in a Weibull chart for various bending angles  

8.6.2 Step Stress Method 

A method for accelerated lifetime testing called the “step stress method” 
was introduced by Nelson [8.9] already in 1980. With incremental increase 
in the load after each failure, the test length is shortened. Here, it is 
important that the failure mechanism does not change. This implies that 
the slope of the Weibull lines remains the same. After evaluating the 
failure data gained by such a method, the original distribution is calculated. 
This method is somewhat debatable and is not experimentally verified for 
mechanical components. However, the application of this method is 
plausible as a version comparison and under a limited time. Furthermore, 
the relationship between load and lifetime must be known (e.g. Wöhler 
curve) for the proper application of this method. The principle of this 
method is shown in Figure 8.14. 
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Figure 8.14. Principle of the step stress method shown in a Weibull network  

8.6.3 HALT (Highly Accelerated Life Testing) 

Since around 1993 a continuative method for accelerated testing under 
the acronym HALT has been discussed in literary resources [8.1]. HALT 
stands for Highly Accelerated Life Testing and refers to a method 
developed by G. K. Hobbs (see Hobbs Engineering Corporation, 
Westminster, Colorado, for reliability assurance of items manufactured in 
the design phase. 

This method is mainly applied to electrical and electronic components, 
sometimes to electro-mechanical components, but less to mechanical 
assemblies. 

Through tests with incremental load increase, relevant failure 
mechanisms are enhanced and this at minimal costs in the shortest time 
possible. HALT works with load levels which considerably exceed the 
load level applied to a product under normal conditions, or at least for 
which the product is specified. The HALT process begins with an analysis 
of possible loads, such as electrical (operation voltage, operation 
frequency, power), mechanical (vibration, shock) or thermal stress 
(extreme temperatures, fast temperature changes). This stress must be 
established for each individual product. For this determination, no 
predetermined load limits exist. As many failure mechanisms should be 
provoked as possible. The goal is the failure and not the survival of the 
test. The component must be monitored during the test. 

This phase represents the beginning of an iterative process made up of 
the following steps: 
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• test with incremental load increase; 
• analysis of test results (search for “root causes”); during this step each 

failure cause must be considered, even if the failures occur outside of 
the specification limits;  

• implementation of corrective actions (e.g. design alterations, material, 
supplier, assembly); 

• renewed test. 

The operation limits (functional limitations) and the destruction limits 
(failure limits) are determined within the realms of trials with load 
increases. When exceeding (under-running) the highest (lowest) operation 
limit, the product reacts defectively, whereas under-running (exceeding) 
leads again to normal operation. In order to determine the destruction 
limits (upper and lower destruction limits), it is necessary to reach back 
step by step to the fundamental limits of technology (FLT). Beyond the 
destruction limits, the apparatus is continually damaged and fails 
irreversibly. A combination of several loads often yields to lower limits.  
HALT begins with the different modular units and then continues in 
increments to more complex levels. 

Results from HALT should be reintroduced in the 

• constructive dimensioning/design for successors,  
• production processes and 
• determination of stress profiles. 

HALT is the most effective method because it can  

• recognize design and production flaws, shortcomings or defects, 
• determine and expand design limits, 
• increase product reliability, 
• shorten development time and  
• estimate the effect of modifications. 

Disadvantage: it is not possible within the realms of HALT to forecast 
reliability values on a statistical basis. 

8.6.4 Degradation Test 

It is possible that within the available test duration no failure of 
components is observed. In this case, it is not possible to make statements 
concerning the failure behaviour of machine components with the 
reliability tests discussed up to this point. Many failure causes, however, 
can be traced back to wearout processes which take place within a machine 
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component. Material wearout leads to a weak point which in end effect can 
cause a component to fail. If the wearout can be measured, then important 
information concerning the behaviour of wear over time can be gained. 

In the “degradation test” the occurred wear on a machine component is 
of interest. The determination of the failure behaviour of a machine 
component is possible without the necessity that the component has failed.  
The failure behaviour is determined over the measure of wear. If the 
relationship between load time and the measure of wear is known, then the 
lifetime end can be determined for each tested component based on its 
wear. Here, a certain wear limit is set as a type of failure. The lifetimes 
determined based on the actual wear can then be statistically analyzed and 
shown in a Weibull network. 

In many cases of application it is possible to measure directly occurred 
wear during the test phase. The result is a function of the wear over time 
obtained during a set of trials (e.g. wear of a tire profile over mileage).  In 
other applications, however, it is not possible to measure wear or at least 
not to measure it non-destructively. Other values can help to make the 
occurred wear measurable, for example the timely reduction of 
performance of functionality of a machine component. Depending on the 
situation, the wear measurement can take place continuously or after 
determined intervals of time. After many wear measurements have been 
taken, the function of wear over time can be determined for the respective 
machine component. 

Various wear behaviours can be determined depending on the 
component. Some materials possess a run-in period. This indicates that the 
wear at the beginning is higher than after a certain period of time. There 
are also some machine components whose wear is less at the beginning of 
operation and afterwards increases. Figure 8.15 shows examples of various 
wear behaviours as a function of the operation time. 
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Figure 8.15. Various wear behaviours 
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The degradation test is based on normal operational conditions, just as 
the component is subjected to under normal use. The accelerated 
degradation test is a combination of an accelerated test, which is executed 
under an increase in load level and the traditional degradation test. Here, 
wear appearances of the components become more frequent. The 
relationship between the time-acceleration factor and wear must be known 
for an analysis of the failure behaviour under normal operational 
conditions.   

8.7 Exercise Problems to Reliability Test Planning 

Problem 8.1 
In the specifications for an automobile transmission a lifetime of 
B10 = 250,000 km is required with a confidence level of PA = 95%. The 
shape parameter is b = 1.5. Determine the required number of 
transmissions which must be tested without any failure 

a) based on the Weibull distribution and 
b) based on the binomial distribution (success run). 

The test should take place without failure under the following 
restrictions: 

c) Due to time, each transmission can only be tested for a maximal of 
150,000 test kilometers. How many transmissions must now be tested?  

d) Due to costs, only n = 15 transmissions are available for testing.  How 
long must these transmissions be tested without failure in order to 
ensure the required reliability?  

The lifetime tests were carried out with a test specimen size of n = 30.  
However, three transmissions failed before the 250,000 km operational 
performance, i.e. x = 3.  The other n - x transmissions survived the required 
B10 operational performance without failure. 

e) Which reliability can be issued to the transmission with an unchanged 
confidence level PA?  

f) With which confidence level is it possible to certify the B10 lifetime?  
g) How many transmissions n* must be additionally tested without 

failure due to the occurred failures until the B10 lifetime in order to 
certify the required reliability with the required confidence level? 

Now, prior information will be considered from a previous model, for 
which the reliability R0 = 90% is known. To solve the following questions 
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use the procedure from Beyer/Lauster (the nomogram as well as the 
analytical relationships). 

h) How many transmissions are to be tested without failure for Lv = 1?  
i) Which test duration ttest must be tested without failure if only 12 

transmissions are available for testing? 

Problem 8.2 
While testing an apparatus n = 2 experimental vehicles are used. The test is 
carried out until the point in time t, where x = 1 unit has failed before the 
time t. Which reliability R(t) can be confirmed as a function of the 
confidence level PA?  Show this relationship qualitatively in a graph. 

Problem 8.3 
During a test, the determined characteristic lifetime T = 1.2·106 load cycles 
of a gearwheel should be verified by operational strength calculations. The 
shape parameter is known to be b = 1.4 and the failure free time is set at 
t0 = 2·105 load cycles. A total of n = 8 gearwheels are available for testing. 
For which test duration ttest must the n gearwheels be tested in order to 
confirm the characteristic lifetime with a confidence level of PA = 90%? 

Problem 8.4 
According to the specifications, a vehicle assembly should reach a lifetime 
of B10 = 250,000 with a confidence level of PA = 95%. A two-parametric 
Weibull distribution is taken, whose shape parameter is b = 1.5.  n = 23 
transmissions are available for testing. 

a) Determine the required test duration ttest for testing without failures.   
b) For which test duration ttest must the n transmissions be tested if the 

calculated characteristic lifetime T = 1.5·106 is considered as prior 
information?  Use the Bayesian method from Beyer/Lauster. 
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9 Lifetime Calculations for Machine 
Components 

Lifetime calculations for machine components represent an important 
foundation for quantitative reliability methods. For this, determined fatigue 
strength and lifetime values are the input values for calculations. In this 
context, the reliability procedures are a form of extended strength calcula-
tion. Due to the large scale of this subject matter, only an overview of the 
procedures and aspects of lifetime calculations of mechanical components 
can be given in the following chapter. A detailed description and further 
explanation of these coherences can be found in technical literature [9.7, 
9.14, 9.15, 9.33].  

The goal of product development with respect to reliability is to develop 
products with a high and defined lifetime [9.5, 9.18]. For a prediction of 
lifetime all failure causes must be known. These can be divided into three 
categories: 

1. fatigue failures, aging failures, wearout failures and failures caused by 
environmental influences, for example corrosion, etc., caused by chan-
ges in the used materials, dependent upon time, e.g. highly loaded com-
ponents in automobile technology. 

2. Tolerance failures lead to unreliable deviations, which forbid an effi-
cient function, for example machine tools, which no longer achieve de-
sired production precision, or seals, which show an unreliably high leak-
age. 

3. Failures, caused by faults, which occur during production, assembly or 
during the operation of machines.  

While the failure behaviours in categories 2 and 3 can only be described 
statistically up to now, procedures exist for a calculational lifetime predic-
tion of material fatigue, see Figure 9.1. For an optimal design the opera-
tional loads occurring on critical locations of a component, caused by ex-
ternal forces, have to comply with the tolerable loads, caused by material, 
design, production and environmental influences [9.15]. 

Depending on the load case, the component is designed either statically 
or dynamically. Dynamic design targets are fatigue strength, endurance 
strength or operational fatigue strength. Well proven strength calculation 

B. Bertsche, Reliability in Automotive and Mechanical Engineering. VDI-Buch,  
doi: 10.1007/978-3-540-34282-3_9, © Springer-Verlag Berlin Heidelberg 2008 
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procedures exist for static, fatigue strength and endurance strength design. 
A largely increasing number of publications describe the measurement of 
operationally endurable components [9.12]. 

Due to uncertainties in the prediction of operational loads and the often 
inexact linear damage accumulation hypotheses, lifetime calculations are 
often subjected to large deviation ranges. Despite these uncertainties, de-
tailed procedures are used today for pre-dimensioning in connection with 
trials for optimization and lifetime proofs. Before series products can be 
released, today, trials are compulsory. 
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Figure 9.1. Calculational lifetime determination with damage accumulation hy-
potheses  

9.1 External Loads, Tolerable Loads and Reliability 

For static and fatigue endurable design of mechanical components, the 
designer uses methods from strength of materials involving nominal values 
or local load peaks from occurred loads as well as corresponding values 
for tolerable load capacities together with a safety factor, see Figure 9.2. 
The safety factor is chosen in such a way, so that preferably all uncertainties 
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Figure 9.2. Failure modes of mechanically calculable failure causes  

9.1.1 Static and Endurance Strength Design 

For most products, however, the load and load capacity are random va-
riables.  Thus they are distributed statistically, see Figure 9.3. An example 
of this is the load on a vehicle transmission. The load is caused by a tor-
sion moment on the transmission input shaft as a function of time. It is 
dependent upon the applied engine concept, the engine characteristic map, 
the mass of the vehicle including payload, the drive concept, the transmis-
sion ratios, the road profiles and especially upon the driver [9.1]. The load 
capacity of a component is not only dependent upon the material itself, but 
also upon the quality of production. If the load σB (density fB) and load 
capacity σW distribution (density fW) are known along with their overlap-
ping, then statements can be made concerning the failure probability and 
reliability of machines and their elements on a statistical basis, see 
Figure 9.3. This coherence between load, load capacity and failure prob-
ability is known as the stress strength interference. It is unimportant which 
type of distribution is at hand. 
 

in the calculation procedure and load assumptions, such as statistical 
spreads in material variables, are taken into consideration [9.7]. Concern-
ing load assumption, it is possible that the operational conditions are col-
lected through an operation factor, e.g. the dynamic factor KA for the de-
sign of gear wheels according to DIN 3990. This procedure has proven to 
be successful. 
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Figure 9.3. Coherence between occurred and tolerable stress or strain   

The reliability R is the probability that the actual load does not surpass 
the tolerable load: 

)( BWPR σ>σ= . (9.1) 

For XW σ>σ , all components will not fail for the load σX. According to 
Figure 9.4, the number of reliable components or their probability can be 
described with the density integral: 

∫
∞

σ

σ⋅σ
x

WWW df )( . (9.2) 

However, the load XB σ=σ only occurs with the relative probability 

BBB df σ⋅σ )( . (9.3) 

The reliability of a component, that is the probability that the actual load 
does not surpass the tolerable load, can be obtained for the actual load σX 
according to the multiplication theorem for independent probabilities, 
Figure 9.4:  
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Figure 9.4. Determination of the reliability out of external loads and load capacity  

If all possible actual loads are considered, then the reliability can be ob-
tained for all loads with Equation (9.4): 

∫ ∫
∞

∞−

∞

σ

σ⋅
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
σ⋅σ⋅σ= ddffR

x

WB )()( . (9.5) 

The variables used are  

• σW: tolerable load, 
• σB: actual load and   
• B, W: the indexes for the load and load capacity. 
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Equation (9.5) says, that the reliability R of a component can be calcu-
lated, if the density functions for the tolerable load fW(σW) and for the ac-
tual load fB(σB) are known. This is shown in Figure 9.5. 

The random variable Y is a measurement for the distance between the 
actual load and the tolerable load [9.22]: 

BWY σ−σ=  with BWY σ−σ= . (9.6) 

• )0( ≥= YPPR  is the probability that 0≥Y : the reliability, 
• )0( <= YPPF  is the probability that 0<Y : the failure probability. 

If the random variables load σB and tolerable load σW are assumed to be 
normally distributed due to their numerable random influences, then along 
with the parameters mean and statistical spread, ),(),,( WWBB ss σσ , the 
density function of a normal distributed load can be determined as follows: 
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The density function of the load capacity can be determined in the same 
way. The random variable Y is likewise normally distributed. One trans-
forms 

Ys
YYZ −

=  with 22
BWY sss += . (9.8) 

With Equations (9.5), (9.7) and (9.8) the normally distributed reliability 
R is calculated tp: 
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Figure 9.5. Failure probability or unreliability of the load and load capacity  

With the safety distance SM: 
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the reliability can be simply calculated 
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where φ is the normal distribution function [9.6, 9.22, 9.30, 9.31]. For this 
calculation, the standardized normal distribution (i.e. mean 0 and standard 
deviation 1) with the Error-Function erfc(x) can be calculated with either 
table calculation programs or be read from tables. 

In contrast, the common strength calculation of the safety factor SF is 
given as the quotient of the mean values: 

B

W
FS

σ
σ

= . (9.12) 

Figure 9.6 shows the decisive influence of the statistical spread of the 
load and tolerable load on the failure probability. 

Instead of the normal distribution, other distribution functions can also 
be used, for example the logarithmic normal distribution or the Weibull 
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distribution. These distributions estimate the extreme values of the distri-
bution, which are of special interest in a better way [9.15].  

Example: 
A component series has a load capacity that is normally distributed with 

a mean of 5,000 N and a standard deviation of 400 N. The load is likewise 
normally distribution with a mean of 3,500 N and a standard deviation of 
400 N. What is the reliability of the component? 
 

The safety factor for this component is: 

B

W
FS

σ
σ

= = 41
3500
5000 .= . (9.13) 

 
 The reliability of this component can be calculated to: 
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9.1.2 Fatigue Strength and Operational Fatigue Strength   

The former observations are only suitable for statically loaded or dy-
namically loaded mechanical elements, as long as they lie within the re-
gion of endurance strength. For the fatigue strength region it can be as-
sumed, that both scatter bands for the tolerable and acting load and stress 
amplitudes approach one another when stressed under operational load 
conditions. The failure probability increases with increasing lifetime, 
Figure 9.6, which causes increasing component damage in the fatigue 
strength region. If the component’s Wöhler curve is known with its life-
time exponent k, the following can be derived out of the line equations in 
the double logarithmic diagram in Figure 9.6. 

k

DD N
N

1
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

σ
σ . (9.15) 

By substituting Equation (9.15) into Equation (9.11), the reliability is 
calculated piecewise for the individual load values in the fatigue strength 
region [9.29] 
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Figure 9.6. Increase in failure probability with increasing lifetime [9.15] 

For components operated at temperatures exceeding the crystal recovery 
temperature of the used material, a similar behaviour can be observed: 
creeping. However, in creep strength calculations the shifting of the com-
ponents resistance strength is both a function of time t and temperature T, 
Figure 9.7. In technical literature, approaches such as the exponential 
model are known and used in order to describe the time and temperature 
dependent behaviour of high-temperature materials [9.23]. In the case of 
operational fatigue strength, Figure 9.8, the actual loads can lie in the fa-
tigue strength region as well as in the endurance strength region. 
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The frequency and amplitude of the actual load are also random vari-
ables. The tolerable load is likewise scattered and statements concerning 
the reliability of operationally loaded machines can be made with the help 
of the damage accumulation hypothesis. Operationally endurable design of 
a component is conducted with the goal to prevent component failure dur-
ing a predetermined period of operation with a certain necessary confi-
dence. For this purpose the component load must first be described over 
the predetermined period of operation. Thus, under consideration of the 
dynamical system behaviour, it is possible to obtain load curves, which can 
be summarized by suitable classification of the loads. The load capacity is 
determined by the material and the geometric parameters of the compo-
nent, such as form, size and surface finish. The comparison between the 
load spectrum and the Wöhler curve can then be conducted with the help 
of a damage hypothesis, generally with the linear damage accumulation 
hypothesis from Palmgren Miner. 
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Figure 9.7. Creep strength 
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Figure 9.8. Oscillation strength with lifetime measurement curves [9.7] 

In order to make statements on reliability according to Equation (9.11), 
instead of the Wöhler curve of an actual, existing, representative load spec-
trum with a certain probability, the lifetime curve, Figure 9.8, or the load 
spectrum must be transformed into an equivalent single stage replacement 
load spectrum. This new load spectrum must represent the same damage 
result as the Wöhler curve. The determination of the load spectrum, how-
ever, is difficult and time-consuming. Thus, the distribution function fB is 
normally not known. The load is then determined under various, unsuita-
bly high stresses. The individual load portions are pieced together regard-
ing their expected frequency and the spectrum is extrapolated for the entire 
time of operation [9.1]. For this unsuitable load the input probability is 
normally estimated. Then the reliability can be simply calculated from the 
distribution of the tolerable load, Figure 9.9. 
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Figure 9.9. Simplified coherence between load and load capacity  

9.2 Load 

When observing operational stress and strain on most components, it 
can be established that constant load amplitudes are quite seldom in tech-
nology, Figure 9.10. The loads follow a more or less random curve. 

For example, passenger cars possess completely random stochastic load 
curves due to the streets’ roughness and the driver. The same applies for 
ships and drilling rigs because of sea disturbance, Figure 9.10.  

Often, pure stochastic processes are superimposed with deterministic 
processes.  For example, a mean load change occurs on the wing of a 
transportation airplane when it taxis, takes off or lands. This is a determi-
nistic, precisely foreseeable process, which to a greater or lesser extent is 
superimposed with random processes due to the gust loads in the air or the 
rolling movement on the ground. Processes taking place in a reverse roll-
ing mill are similar. On the other hand, the load of the blade in a gas tur-
bine in a transportation airplane is to a large extent deterministic, but the 
load sequence is still variable. The cause for this is that the revolution 
speed is almost completely deterministically preset for the pilot during a 
certain flight and the load of the disc is mainly dependent upon the square 
of the revolution speed. In order to use these load-time-writs for a lifetime 
prediction, it must be assessed with a statistical procedure. 
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Figure 9.10. Stochastic and deterministic load curves [9.15] 

9.2.1 Determination of Operational Load  

For the determination of the operational load a load-time-writ or load-
path-writ is required for the load. These load-time-writs can be determined 
with various possibilities, measurements or simulations, Figure 9.11. 
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Figure 9.11. Determination of the load with simulations and measurements on a 
vehicle transmission  
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Figure 9.12. Determination of the torque on transmission shafts through meas-
urement  
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Firstly, stress and strain curves for a component can be directly meas-
ured during operation. However, a measurement during operation is quite 
time-consuming and on certain locations often even impossible, for exam-
ple gear tooth tension in a transmission. A block diagram for the measure-
ment of torque curves in vehicle transmissions is shown in Figure 9.12. 

For the mobile use of vehicles the torque curve is classified online with 
the help of a micro processor, or it is only recorded and classified with a 
delay. High sampling rates and long measurement cycles require online 
processing, since the number of measurement values to be saved would be 
too high. Today, with simple algorithms and fast processors an online clas-
sification is even possible for high frequency load-time-functions [9.10, 
9.31].  
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Figure 9.13. Determination of local operational loads out of a load nominal func-
tion [9.16] 

The time and effort involved in measurements done directly on a com-
ponent can often be reduced, if for one location in the force or torque flow, 
the load nominal function is determined and transferred onto the remaining 
components through calculation. For a vehicle, for example, this would 
involve measuring the clutch torque. Out of the measured torque, the 



www.manaraa.com

306      9 Lifetime Calculations for Machine Components 

torque on the gear wheels can be determined and out of that, the resulting 
local tensions can be acquired. Since, however, the connection between the 
clutch and the gear wheels and the gear wheels themselves are not rigid, 
but rather they possess mass, rigidity and dampers, the measured values 
taken from the clutch can only be transferred to the other individual com-
ponents by considering the total dynamic behaviour of the system, see 
Figure 9.13. 

For further analysis suitable programs exist for the simulation of rigid or 
elastic multi-body systems (MBS), finite elements (FEM) or boundary-
element programs (BEM), see Figure 9.13. 
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Figure 9.14. Simulated drive tour of a vehicle 

Simulation offers a second method to determine stress and strain curves.  
This method is displayed in Figure 9.14 for vehicle power trains [9.25]. 

Simulations also require measured data such as path, vehicle and driver 
data for the example of a vehicle. In addition, an algorithm is necessary, 
which, dependent upon the stationary input values, allows the determina-
tion of the dynamic curve of the load as a time or path dependent variable. 
Then a simulation is able to produce the same results for the stress and 
strain curve as the measurements taken during operation, as long as the 
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marginal conditions and algorithm are representative of the reality. The 
decision whether the nominal load or the local load should be determined 
is dependent upon the detail of modulation of the used model. In certain 
cases, local loads can be derived out of the nominal loads. 

A third method completely avoids the time-consuming identification of 
the load-time-function [9.19]. The load assumptions are mostly made as a 
type of load spectrum. The form of the spectrum can be assumed to be 
normally distributed, for example, since the observed process is a random 
process [9.7, 9.15]. It can also be already given for rule-type processes, for 
example for the design of cranes, or it may be known from several long-
time measurements, see Figure 9.15. 
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Figure 9.15. Various standardized standard spectrums with 8 stages  

As a further simplification the load spectrum is summarized as an opera-
tion factor. Here, a single stage equivalent load spectrum is determined 
with the same damage result. The ratio of the equivalent load to the nomi-
nal load σequ/σnenn is added to the nominal load as an operation factor. 

9.2.2 Load Spectrums 

For the lifetime calculations the measured or simulated load-time-writs 
must be evaluated with statistical counting methods [9.32]. This procedure 
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is known as classification. In DIN 45667 the single parametric classifica-
tion methods are introduced in detail [9.9]. Along with the single paramet-
ric classification methods, two parametric methods also exist, which have 
proven themselves useful for the classification of load-time-functions. For 
lifetime estimations the size of the stress or strain and its frequency is of 
major interest. The frequency of the load-time function and the sequence 
of the occurrence of the results are thus not taken into consideration, unless 
one is dealing with high temperatures, corrosion, or if the load-time-
functions must be redesigned out of the load spectrum for trials to be con-
ducted, see Figure 9.16. These assumptions are generally allowed, how-
ever, they should be closely checked for each individual case [9.32]. 

In classification the load curve is divided into individual oscillation cy-
cles as well as possible, in order to establish a correlation to the Wöhler 
trials, which are carried out with a sine type of load in the single stage 
procedure. 
 
dynamic load    one cycle e.g. 

sine wave
one cycle for

    classification    

t

σ

t
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t

neglected: • shape of the vibration
• frequency of the vibration
• sequence of the vibration  

Figure 9.16. Oscillations for lifetime predictions and simplifications in the classi-
fication  

The transformation of the load-time-curve is carried out by arranging 
the individual oscillation cycles as a number value in a class grid. The 
precision of the recording of the load amplitude is determined by the fine-
ness of the class grid. 16 to 24 classes offer a sufficient classification. Cre-
ating the spectrum gives the class occupation and the sum occupation.  
Class occupation indicates how many recorded oscillation cycles lie within 
the boundaries of a certain class. The sum occupation indicates how many 
oscillation cycles are lower than or the same as the upper boundary of the 
observed class. The form of the spectrum has a decisive influence on the 
component’s lifetime. 
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In a half logarithmic representation, a load spectrum is described by the 
amplitude H (cumulative frequency) and the maximal and mean values of 
the stress and/or strain (σo, σm), see Figure 9.17. 

In the following section, the applicable single and two parametric count-
ing methods will be introduced for lifetime determination. Single paramet-
ric methods only count the amplitude or the class boundary. Two paramet-
ric methods count the amplitude and mean or maximum and minimum. 
Additionally, these methods can be further distinguished between methods 
which count the oscillation cycles and thus collect the stress-strain charac-
teristic for material mechanics and methods, which have a time, revolution 
or angle dependent sampling of the signal, e.g. in drive engineering, out of 
which the load on the individual components can be determined. 

9.2.2.1 Single Parametric Counting Methods 

Level Crossing Counting   
The principle method for classification should be shown on an example 

of level crossing counting, see Figure 9.17. In level crossing counting a 
count is provoked at the crossing of one class boundary. The class widths 
are determined by the number of classes and the statistical spread of the 
measured values. For positive classes all the class transitions located above 
the boundary are counted, while for negative classes all the class transi-
tions located below the class boundary are counted. Passes through the 
reference line (neutral axis) should be counted to the first positive class.  
This classification method is shown in Figure 9.17 for a stochastic func-
tion. It is shown as a histogram with the class number j over the absolute 
class occupation number nj and vice versa for nj over j. By adding the ab-
solute occupation numbers, the cumulative frequency Hj is yielded. Fur-
thermore, a histogram of the absolute cumulative frequency of the sums is 
given. Level crossing counting describes the actual load elevations. Since, 
however, the amplitudes of the individual load cycles have been lost, the 
amplitude load spectrum must be reproduced out of the level crossing 
counting spectrum for the execution of a damage calculation. For this it is 
required that for each point in the spectrum, the crossing number is equal 
to the cumulative frequency of the load at the amplitude and corresponds 
to the upper and lower limit of the spectrum load. Strictly speaking, this is 
only the case if all oscillation cycles cross one class.  
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Figure 9.17. Classification with level crossing counting  

In order to create a step-like amplitude load spectrum, it is necessary to 
insert blocks into the level crossing counting spectrum. The height of each 
block corresponds to the average difference between the upper and lower 
spectrum load and represents the respective amplitude load. The breadth of 
each block describes the respective load cycle number. This procedure 
only provides the amplitude loads required for damage accumulation cal-
culations after a transformation. 

In the past, level crossing counting was often used for lifetime estima-
tions. For variable mean loads separate spectrums must be set up. 
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Range Counting and Range Pair Counting 
Range counting and range pair counting are standardized in DIN 45667, 

see Figure 9.18. 
For these methods the maximal and minimal values must be known in 

order for the load curve to be assessed. The difference between two suc-
cessive extreme values is referred to as the range and is recorded as half an 
oscillation cycle in range counting. Either increasing or decreasing ranges 
are counted. 

This method reacts sensitively to small in-between oscillations, which 
are of no importance to the damage, however they deconstruct large 
ranges. Thus, due to the exponential law of damage, the calculated total 
damage is strongly decreased. If possible, small in-between oscillations 
should be filtered out either during or before the classification process. 
This method is not suitable for lifetime estimation. 

Range pair counting determines the cumulative frequency of range 
pairs, which are composed of equally large increasing and decreasing 
ranges. The ranges can be composed of several range sections which occur 
timely delayed to one another and do not necessarily need to lie at the 
same elevation as its equal counterpart. Thus, a characterization of the 
mean load is not possible. The absolute values for the maxima and minima 
are lost. Overlapped in-between oscillations, however, are recorded in 
addition to the main load cycle, without deconstructing it. 

Since the result of range pair counting is a cumulative frequency distri-
bution, out of which the frequencies of the individual classes can only be 
determined after the first completion of the counting, online assessment 
cannot be applied. Range pair counting is often used for lifetime estima-
tions. However, caution should be taken during the assessment that only 
regions with the same mean load are added together. 
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Figure 9.18. Range counting and range pair counting [9.15] 

Time at Level Counting and Level Distribution Counting  
Time at level counting and level distribution counting shown in 

Figure 9.19 and Figure 9.20 belong to the revolution speed dependent sam-
pling methods for a vehicle transmission. These counting methods, espe-
cially level distribution counting, are the standard procedures for gear and 
bearing lifetime calculations today, since the individual stresses of the gear 
and the bearing stresses can be determined out of the torque-time-function.  
For time at level counting the sum of times is determined, that the signal 
remained within the individual class boundaries. 
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For level distribution counting the signal is read after equal time inter-
vals and counted in the respective class. The frequency of counting per 
class is a measurement for the time spent in that class. 
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Figure 9.19. Recording a transmission load spectrum (torque) with time at level 
counting  
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Figure 9.20. Creating a transmission load spectrum 
 

For small sampling intervals the counting result corresponds to time at 
level counting. If, for the example of stress on gears, the lifetime is to be 
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evaluated with respect to pittings (front and back flank seen separately), it 
is necessary to distinguish between the stress on the driving and the driven 
flank. For the determination of the roll bearings’ lifetime and the evalua-
tion of tooth failure the driven flank and driving flank spectra are merged 
into one total spectrum, due to the fact that during driven operation and 
driving operation, the same gear tooth is stressed. 

9.2.2.2 Two Parametric Counting  

For single parametric counting only the amplitude or the class bounda-
ries are counted. For two parametric counting the maximum-minimum or 
the amplitude-mean is counted, see  

Range Mean Counting 
Range mean counting, see a, is an expansion of the single parametric 

range pair counting. The counting result is a frequency matrix for ranges 
and mean values. This counting method is not widely used, since the tran-
sition matrix of the following method is more efficient. 

From-To-Counting in a Transition Matrix  
The positive and negative flanks of a load-time-function are entered into 

a matrix one after the other, see Figure 9.21b. This matrix can be referred 
to as the from-to-matrix, transition matrix, correlation matrix or Markov 
matrix. The increasing flanks are found in the upper triangular matrix and 
the decreasing flanks are found in the lower one. The diagonal remains 
empty. The transition matrix shows the contents of the load-time-function 
clearly (extreme values, etc.). The results from single parametric counting 
functions can easily be derived, see Figure 9.25. An online classification is 
possible with arbitrarily long measurement cycles. 
 



www.manaraa.com

9.2 Load      315 

i = 1

2

3

4

from classes i

j = 1 2 3 4

0 1 1 1

1 0 1 1

0 2 0 0

1 1 0 0

in classes j

M2

M1

M3 M4

M5

S
1

S
2

S
3

S
4

S
5

vi
br

at
io

n 
am

pl
itu

de

time

a) range mean counting

b) from-to-counting in a transition matirx 

c) range pair-mean-counting

class

4

3

2

1

load-time-function

reversal point

time  
Figure 9.21. Two parametric counting 

Range Pair-Mean-Counting 
This counting procedure, see Figure 9.21c, corresponds to range pair 

counting, except that in this procedure the mean is also registered and the 
result is entered into a matrix. The result is identical to the result gained in 
rain flow counting, except for the residuum, which can only be determined 
with rain flow counting. 

Two Parametric Level Distribution Classification 
Two parametric level distribution classification connects the level dis-

tribution classification of two signals. The values are entered into a matrix.  
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This method is standard for torque and revolution speed classifications for 
the determination of bearing stress and gear tooth spectra. With the value 
of the revolution speed, the number of revolutions can be determined 
[9.24]. 

Rain flow Counting 
Rain flow counting is a concept developed in Japan by Matsuishi and 

Endo [9.11] and in the USA for the segmentation of any arbitrary stress 
curve into complete oscillation cycles. Rain flow counting counts closed 
hysteresis loops in a load-time-function, which are decisive for the damage 
of metal materials. Open hysteresis curves are stored as a residual, see 
Figure 9.22. 

The problem, which led to the development of rain flow counting, was 
to develop a procedure to classify the stress-strain characteristic of a non-
single stage elastic-plastic loaded material in such a way, that characteris-
tic values of the material behaviour, which, after recent observation, are 
associated with fatigue damage (disruption), can be determined and a stor-
age for these values can be made accessible. Such characteristics are typi-
cal variables for single stage trials, which have an automatically closed 
stress-strain hysteresis loop, and characteristic variables for the case of non 
single-stage load processes of hysteresis loops, which completely close 
during the load-time functions, see Figure 9.22. 

The total strain oscillation amplitude (εtot) and the plastic strain oscilla-
tion amplitude (εpl) count as such characteristic variables. They are charac-
teristic variables for which alone the strain-time function must be known in 
order to determine them. Naturally, all stress variables can be classified 
with the rain flow method. Normally, the variables for the outer loads are 
classified. 

The following assumptions are valid for rain flow counting [9.8, 9.21]: 

• Cyclic stable material behaviour, that means that the cyclic stress-strain 
curve remains constant, thus no hardening or softening of the material 
takes place.  

• Validity of the Masing hypothesis, which means that the form of the 
hysteresis loop branches correspond to the double of the initial load 
curve.  

• Memory behaviour of the material, compare with Figure 9.22, which 
means that after a closed hysteresis loop, a previously not yet com-
pletely closed hysteresis loop follows the same σ, ε path. 
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Figure 9.22. Acquisition of the load-time behaviour with the rain flow counting 
method  

Several algorithms exist for the automation of this assessment, which 
only slightly differ from one another. The two most common algorithms 
are the push-down-list [9.32] and HCM (Hysteresis Counting Method) 
[9.8]. The latter of the two is more suitable for a computerized supported 
assessment. 

9.2.2.3 Comparison of the Different Counting Methods  

Figure 9.23 and Figure 9.24 show classification results for constant and 
variable mean loads in order to compare the different counting methods. 
For constant mean stress, see Figure 9.23, the oscillation cycles are com-
pletely recorded. For variable mean loads, see Figure 9.24, the rain flow 
and the range pair counting methods do now deviate from one another. 
Level crossing counting indicates a higher portion of larger oscillation 
cycles (more damage intensive) for smaller spectrum sizes. For range 
counting it is exactly the opposite. 

If, for example in drive engineering, the exact stress-strain curve is not 
taken directly from the most critically loaded position, but rather the mean 
value of the load function in the power flow either before or after this posi-
tion is taken, then the time at level counting or level distribution counting 
methods should be applied. 
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Figure 9.23. Comparison of classification methods for loads with a constant mean 
stress  
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Figure 9.24. Comparison of classification methods with variable mean stresses 

Since calculated lifetime estimations are afflicted with large uncertain-
ties, it is desired to reconstruct the stochastic load-time functions out of the 
load spectrums, in order to carry out experimental lifetime proofs with 
servo-hydraulic facilities. However, the reconstruction of a representative 
load-time function is not possible with the load spectra alone. Figure 9.25 
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gives an overview of single parametric counting results which can be de-
rived from two parametric counting results. 
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Figure 9.25. Interrelationship between single and two parametric counting meth-
ods  

In conclusion one can say: the counting method chosen influences the 
result of the lifetime estimation. Contemporary knowledge suggests that, 
the two parametric rain flow counting method is the most suitable method 
for the acquisition of the local stress-strain hysteresis curves. However, the 
most well known and applied methods are level crossing counting and 
region pair counting. 

In drive engineering level crossing counting as well as the single and 
two parametric time at level counting and level distribution counting are 
used. 

9.3 Tolerable Load, Wöhler Curves, SN-Curve 

The Wöhler curve, often also referred to as the SN-Curve, is required as 
a description of the material behaviour for the calculation of fatigue 
strength and operational fatigue strength. Two types of Wöhler curves 
exist: stress controlled and strain controlled. 
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9.3.1 Stress and Strain Controlled Wöhler Curves 

Stress controlled Wöhler curves describe material behaviour as a corre-
lation between the tolerable load cycles to failure N for a certain stress 
amplitude, Figure 9.26. 
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Figure 9.26. Stress controlled Wöhler curve 

There are three zones to distinguish between in the double logarithmic 
representation of Wöhler curves:  

1. Quasi-static fatigue, up to ca. N = 101 - 103 oscillation cycles, 
2. Fatigue strength, the zone of the sloped lines, until the corner load cy-

cles to failure ND = 106 - 107, 
3. Endurance strength, zone of the horizontal lines starting from N > ND. 

However, several materials such as austenitic steels do not possess a dis-
tinct endurance strength 

In the fatigue strength zone, the Wöhler curve can be described by the 
following equation if represented in double logarithmic form: 

k

D

a
DNN

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ
σ

⋅= . (9.17) 

In contrast to the stress controlled Wöhler curves, strain controlled 
Wöhler curves describe material behaviour for constant strain, see 
Figure 9.27. 

With strain controlled Wöhler curves material damage can be better de-
scribed, since for oscillating loads, the remaining strain which occurs in 
every load cycle is virtually the same as the total strain for the case of large 
strains, and thus can be seen as damaging.  
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Figure 9.27. Strain Wöhler curves with constant stress 

For double logarithmic representation, the lines of the elastic and plastic 
strain amplitudes can be formed for example with the Manson-Coffin 
equations: 

( ) b
Aelela NEk ⋅=ε , , (9.18) 

c
Aplpla Nk ⋅=ε , . (9.19) 

kel, kpl are the respective stress and strain coefficients of the material. b, c 
are the stress and strain exponents. The strain Wöhler curve is normally 
given as the crack Wöhler curve. This indicates that the cause of damage is 
cracking in the material. 

9.3.2 Determination of the Wöhler Curves 

If possible, the determination of Wöhler curves for operational fatigue 
strength calculations should be carried out on a real component. Often, 
however, due to cost and time limitations, the calculations are only carried 
out on special test specimens. 

The resulting load cycles to failure are random variables, which means 
that they lie scattered around the mean value. Today, the transformation of 
results won from a tension/compression trial onto a real component is dif-
ficult [9.26]. Thus, the exact determination of a notch over the entire load 
cycle zone is still not possible today. Therefore, one is forced to rely on 
tests and trials. 
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Figure 9.28. Material properties, Wöhler curve 

For the calculation the shape variable αk and the notch variable βk are 
used. These variables show how much greater the local stress is than the 
nominal stress in the notch. Additionally, mean stress influences the life-
time, whereas a tension mean stress shortens the lifetime and a compres-
sion mean stress increases the lifetime. The effect of a tension mean stress 
is dependent upon the material. High-strength materials are very sensitive 
to tension mean stress, whereas low-strength materials are not so sensitive. 
Casting materials are more sensitive to tension mean stress than malleable 
materials. In general, welding connections behave like casting materials. 

Likewise, residual stress can strongly influence a material’s lifetime.  
This type of stress acts like a mean stress of the same amplitude and the 
same algebraic sign, as long as the residual stress is not decreased again 
during operation due to high temperatures for example. The influence of 
residual stress on the lifetime is difficult to determine quantitatively. Fur-
thermore, residual stress can disappear during the lifetime because of oscil-
lating loads. In general, the technological characteristic influence, for ex-
ample through poor deformation while forging, leads to unfavourable 
material properties and material flaws. The geometric characteristic influ-
ence covers the uneven stress distribution within a component. The statis-
tical characteristic influence covers the number of possible failures with 
respect to the volume of a component. The type of load is another influ-
encing parameter. Bending stress, for example, causes the support effect.  
This influence is considered by a support digit. The surface finish also 
plays an influential role. Components with a smooth surface achieve 
longer lifetimes than components with rough surfaces. Further influencing 
factors come from the surrounding environment, such as corrosion or tem-
perature. 
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If all these parameters are considered with the various types of positive 
and negative influences on the lifetime, it is also necessary, aside from all 
other difficulties, to consider interdependencies of the influences among 
one another. Therefore, until now it has not yet been successfully achieved 
to develop a scientific irreproachable method for lifetime estimation for 
even the simple case of constant stress amplitudes, which for example is 
based on the metallic characteristics of a material. Thus, the only option 
for lifetime estimation is the Wöhler trial, at best carried out on the origi-
nal component itself. 

For cases where the necessary Wöhler curve is not available, the “calcu-
lational fatigue strength proof” guide [9.12] can be used as an aid. Another 
approach can be used according to Hück [9.17]. This approach deals with a 
statistically ascertained formula, developed out of several Wöhler curves, 
which takes the influential parameters like type of material, shape variable, 
type of load, level stress ratio, surface finish and production procedure into 
consideration. 

In all of these estimations the danger exists that significant influential 
factors are not taken into consideration. The example in Figure 9.29 shows 
a comparison of a component Wöhler curve of a straight toothed spur gear 
with the Wöhler curve according to DIN 3990 for gear tooth stresses. The 
component Wöhler curve of the gear was determined in the transmission 
on an electrical torque test rig [9.4]. 
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Figure 9.29. Comparison of a DIN Wöhler curve and a component Wöhler curve 
for gear tooth stress  
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9.4 Lifetime Calculations  

In lifetime calculations, occurring loads (load spectrum) are compared 
with the tolerable load. In principle, three different calculation concepts 
exist:  

• nominal stress concept, 
• local concept or notch base concept and  
• fracture mechanics concepts. 

The fracture mechanics concept assumes that the component has already 
begun to crack and calculates the remaining lifetime of the crack’s pro-
gress until the final fracture occurs [9.15]. Because this concept has little 
relevance for mechanical components, it will not be observed here in fur-
ther detail. 

In Section 9.4.1 and 9.4.2 the general procedure shown on an example 
using the nominal stress concept is shown. Section 9.4.3 discusses the 
differences between the nominal stress concept and the local concept. 

9.4.1 Damage Accumulation 

Oscillating loads cause an effect in materials, which is often referred to 
as “damage” as soon as this load surpasses a certain limit. It is assumed 
that this damage accumulates from the individual load cycles and leads to 
a material disruption (material fatigue). For an exact calculation this dam-
age must be collected and recorded quantitatively. This, however, has not 
yet been achieved with success. 

Despite this fact, in order to gather information concerning the lifetime 
L out of the results of Wöhler trials with irregular load cycle effects, 
around the year 1920, Palmgren developed the fundamental idea of linear 
accumulation, specific for roll bearing calculations. In 1945, Miner pub-
lished the same idea in a general form. 

Miner assumes that a component absorbs work during the fatigue proc-
ess. The ratio of already absorbed work to the maximal work which can be 
absorbed is a measurement for the current damage. Thus, the ratio of the 
load cycle number n to the load cycles to failure N, which is determined in 
the single-stage zone with the corresponding amplitude, is equal to the 
ratio of absorbed work w to absorbable work W. This is denoted as the 
damage portion: 

N
n

W
w

= . (9.20) 
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The prerequisite that the absorbable fracture work W is the same for all 
occurring load sizes, allows the addition of the individual damage portions 
for load cycles of different sizes: 

W
w

W
w

W
w

N
n

N
n

N
n m

m

m +++=+++ ...... 21

2

2

1

1 . (9.21) 

The limiting condition of strength comes into play when the absorbed 
work and absorbable work are the same: 

1
...21 =

+++
W

www m . (9.22) 

By substituting this equation into Equation (9.21), the non quantifiable 
work sizes disappear and a condition evolves which can be used for di-
mensioning tasks: 
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N
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N
n

. (9.23) 

Using the fundamental equation of the damage accumulation hypothesis 
requires knowledge concerning the load cycles to failure Ni for the corre-
sponding load absolute values σi. These can be taken, for example, out of a 
Wöhler curve in a double logarithmic coordinate system defined by the 
endurance strength pivot point (σD, ND) and the slope k. Out of the equa-
tion for a straight line for this Wöhler curve, the Equation (9.17) evolves 
for the tolerable load cycles to failure N: 
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⋅= . (9.24) 

After substituting Equation (9.24) in (9.23), Equation (9.25) describes 
the damage with the damage sum S of a discontinuous spectrum with m 
load stages σi: 

max
1

       ; σ≤σ≤σ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ
σ

⋅= ∑
=

iD

m

i

k

D

i

D

i

N
n

S . (9.25) 

 
Miner confined the applicability of this equation by the following condi-

tions:  

• sinus formed load curve; 
• no hardening or softening appearances in the material;  
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• the begin of a crack is considered as an incipient damage;  
• some loads lie above the endurance strength.  

By not considering the conditions above, especially the last condition, 
the results of the calculations will be on the unsafe side in many cases.  
The Palmgren-Miner hypothesis is shown in Figure 9.30. 
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Figure 9.30. Linear damage accumulation hypothesis according to Palmgren Mi-
ner 

Numerous different researchers have occupied themselves with the 
damage accumulation hypothesis, so that currently several variations exist.  
In general, the variations only distinguish themselves by the fundamental 
Wöhler curve used: either fictitiously extrapolated or the real curve itself, 
Figure 9.31. The hypotheses from Haibach, Corten-Dolan [9.15] and Zen-
ner-Liu [9.20, 9.34] also assume damage for loads, which occur in the 
endurance strength zone. 

The fundamental Miner procedure from Corten and Dolan is an applica-
tion of the law of Palmgren-Miner on a Wöhler curve, which is elongated 
straightly until σ = 0 without taking the existence of an endurance strength 
into consideration. Thus, damage portions of stress changes less than the 
endurance strength are considered: 
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Figure 9.31. Most important modifications of the law of Miner 

This assumption that no endurance strength exists yields results which 
lie on the safe side, especially if a large portion of the loads lie below the 
endurance strength. For a decreasing portion of load cycles lower than the 
endurance strength, the discrepancy to the result is decreased when using 
the law of Palmgren-Miner. 

The Miner procedure modified by Haibach is oriented on a thesis sup-
ported by experimental results, which implies that the endurance strength 
decreases with increasing damage. The iterative calculation of damage 
growth under consideration of the straight existing degree of damage (con-
sequential Miner modification), which can only be done with much time 
and effort, is altogether avoided in Haibach’s approach through the defini-
tion of a fictitious extended fatigue strength below the endurance strength.  
The calculation of a spectrum’s damage now takes place with the Wöhler 
curve slope k for loads, which are greater than the endurance strength, and 
with the slope (2k - 1) of the fictitious fatigue strength line for loads, which 
are lower than the endurance strength: 
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0;1 ≥σ≥σσ≥σ≥σ jDDi . (9.28) 

The consequential Miner modification differs from the modified Miner 
procedure by the fact that the lifetime line merges to the endurance 
strength like an asymptote. 
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Another improved approach was suggested by Zenner and Liu [9.20, 
9.34]. This approach claims that the component Wöhler curve is not an 
adequate reference for lifetime calculations. Since most of the time, dam-
age is caused by two different phases: crack formation and crack progres-
sion, the crack progression line is assumed to have the slope m = 3.6 inde-
pendent of the type of material. The fictitious reference Wöhler curve is 
then formed out of the component Wöhler curve and the crack progression 
line. The pivot point in the reference Wöhler curve is at the spectrum’s 
highest value and has the slope: 

2
* mkk +

= . (9.29) 

The endurance strength of the reference Wöhler curves is half of the en-
durance strength of the component Wöhler curve: 
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=σ . (9.30) 

Thus, the damage of a component can be calculated analogue to Equa-
tion (9.25):  
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This procedure is evaluated differently in different literature sources.  
Melzer [9.21] and Zenner [9.20] claim an improvement in the informa-
tional value, while other literature sources [9.13, 9.28] claim a shift of the 
results to the unsafe side. 

If stress or strain spectrums and a Wöhler curve are available, then with 
the help of the damage accumulation hypothesis the lifetime of a compo-
nent can be calculated. In practice, however, it has often been proved that 
for a failure the damage sum S = 1 often does not comply. Thus, the calcu-
lations are carried out with another damage sum S = constant, which is 
gained from experimental operation fatigue strength trials [9.2]. This pro-
cedure is referred to as the relative Miner procedure and is found quite 
often in practice [9.13]. The survival probability results from the initial 
probabilities. 
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9.4.2 Two Parametric Damage Calculations  

The calculation equations for damage accumulation shown in the previ-
ous sections only consider the amplitude stress as the most important in-
fluential factor for the assessment of the individual load cycles. Consider-
ing other parameters, such as the mean stress or frequency for example, is 
basically possible, if a respective identification of the load and the neces-
sary material property values are at hand. 

Since after the amplitude stress, the mean stress as a second parameter 
has the largest influence on the lifetime, an additional consideration of the 
mean stress is conducted in a two parametric damage calculation. In some 
cases the limit stress ratio R = σu / σo is the preferred designation of the 
mean stress.  

Both variables are made available through a classification done with 
rain flow counting for example. The execution of the damage calculation 
requires the deflection stress spectrum and the component Wöhler curve 
for each observed mean stress, Figure 9.32. 
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Figure 9.32. Two parametric damage calculation under consideration of the mean 
stress  

The equation for the calculation of the relative damage includes the 
compilation of the individual deflection stress classes in the inner summa-
tion, which, depending on the outer summation, is carried out for each of 
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the observed mean stress classes (limit stress ratio classes), for example for 
the fundamental Miner modification: 
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An alternative approach is the possibility of including the mean stress 
with the use of the modified Haigh graph. This graph describes the rela-
tionship (Gerber parabola or Goodman line) between mean stress and am-
plitude stress for a constant limit oscillation cycle number. Here, with rain 
flow counting, for example, through a transformed amplitude with the 
mean stress 0 

( )matransa Mf σσ=σ ,,,  (9.34) 

each matrix element is replaced with the mean stress sensibility (compare 
with Figure 9.33): 
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The result is an amplitude stress spectrum [9.17]. 
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Figure 9.33. Haigh graph with the Goodman line and the Gerber parabola  
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Further trials have shown that the sequence in which the stress ampli-
tudes working on the component occur has a significant influence on the 
lifetime. A longer lifetime can be expected, if for the same load spectrum 
the oscillation load cycles with lower amplitudes occur on the component 
before the larger amplitudes. This leads to the requirement, that the trial 
loads, upon which the lifetime estimations are based, should show the 
same intermixture of amplitudes as the loads in operation. Otherwise, large 
deviations in the results will occur. In general, in calculational lifetime 
predictions uncertainties can arise. Along with the operational load, the 
strength values are inflicted with uncertainties and a calculational linear 
accumulation of component damage based on knowledge of fracture me-
chanics is only conditionally correct. Thus, operational fatigue strength 
measurements of a component must be supported by trials. 

9.4.3 Nominal Stress Concept and Local Concept 

Normally, the lifetime of components is estimated based on nominal 
stress (nominal stress concept). This procedure, see Figure 9.34, will be 
shown in the last section of this chapter. 
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Figure 9.34. Lifetime calculation with the nominal stress concept  
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Beginning with a load spectrum determined with a counting method, 
most often with the rain flow method, possibly under consideration of the 
mean stress influences, the lifetime is determined by the relative linear 
damage accumulation according to Palmgren Miner together with the 
component Wöhler curve. 

This method has proven itself to be quite successful, however it is 
somewhat deficient in several aspects. Therefore, it is often better to de-
termine the local load-time function (local concept, notch base concept) 
[9.2, 9.3, 9.13, 9.27, 9.28, 9.34]. In other words, the local stress-strain 
curve is determined for the highest loaded locations on a component due to 
outer loads. Furthermore, only one single material Wöhler curve is neces-
sary. 

In the local concept the local load process is classified with the rain flow 
method, see Figure 9.35. The relationship between the external stress and 
the local strain, which due to the alternating plastification is not always 
liner, is determined with stress analyses, for example with finite element 
analyses.  

The cyclic stress-strain curve, which can be derived from the stress-
strain hystereses, compare with Figure 9.22, represents the coherence be-
tween the actual stresses and strains. Hardening and softening of the mate-
rial is not considered. Residual stress is considered if applicable. 

Based on these parameters, a suitable damage parameter is chosen, typi-
cally according to Smith, Watson and Topper [9.27] for example: 

gesaSWT EP ,max ε⋅⋅σ= . (9.36) 

Other damage parameters, which under certain circumstances can incor-
porate mean stress influences more adequately, are described in [9.3, 9.15]. 
Alternatively, a component specific Haigh diagram can be used to estimate 
the mean stress influence. 

With the help of a damage accumulation hypothesis the damage portion 
is calculated on a standard test specimen with the strain Wöhler curve of a 
material. 

The advantage of this concept is that local stresses can be directly com-
pared to material property values. However, the local concept involves 
several uncertainties due to the numerous influential parameters. In prac-
tice, a combination of the nominal stress concept and local concept is 
found, so that, for example, the component Wöhler curve is used, since 
here the production and surface finish influences are accounted for, to-
gether with experimental proofs [9.13]. 
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Figure 9.35. Lifetime calculation according to the local concept or the notch base 
concept  

9.5 Conclusion  

With knowledge of the load spectrum and the tolerable material load in 
the form of a Wöhler diagram, a lifetime prediction can be made for a me-
chanical element with the help of a damage accumulation hypothesis. Here 
it should be considered, that this prediction can only be made with a cer-
tain probability, since amongst other things the load spectrum as well as 
the load capacity expressed in the form of a Wöhler curve are random 
variables. Likewise, the damage accumulation hypotheses known today 
have only been proven empirically in materials science. Therefore, a prac-
tical lifetime prediction requires a balance between field tests, test stand 
trials, calculations and a careful assessment and evaluation of the data, if 
the prediction should be able to serve as an effective tool for the designer, 
Figure 9.36. 
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Figure 9.36. Trial variations  
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10 Maintenance and Reliability 

Maintenance, reliability and costs are dealt with in this chapter. Each of 
these aspects are interdependent. The aim is to design of the system so that 
availability and costs optimised. Thus, a one-sided view often does not 
suffice in achieving the goal of product design. In general, this goal is the 
optimal design of a system, in order to achieve the best possible equilib-
rium between availability and costs. 

The term “life cycle costs” has continued to grow in importance during 
the last few years. The costs which occur during the entire planned opera-
tional lifetime of a technical system can very much influence any neces-
sary investment decisions, and thus make up the focus of the first part of 
this chapter. Information concerning the reliability and planned mainte-
nance methods during the operational lifetime are necessary for a progno-
sis of life cycle costs. 

Various calculation models have already been developed for the analysis 
of the reliability and availability in connection with maintenance proc-
esses. These models vary considerably in complexity, to the effect that 
some models have certain restrictions as to which maintenance procedure 
can be recaptured by the model. Thus, in the second part of this chapter an 
overview of possible calculation models is given along with the parameters 
which can be determined. 

10.1 Fundamentals of Maintenance 

Along with the failure behaviour, maintenance considerably influences 
the availability of a technical system in mechanical engineering [10.8].  
Maintenance can be defined as follows [10.14,  10.46]: 

Maintenance signifies methods for the determination and evaluation 
of the current status as well as for the preservation and reestablish-
ment of the nominal status of facilities, machines and components. 

Maintenance methods can be divided into preventive and non-preventive 
(corrective) methods. Maintenance methods include service, inspection, 
overhauling and repair. In terms of maintenance strategies, inspection 

B. Bertsche, Reliability in Automotive and Mechanical Engineering. VDI-Buch,  
doi: 10.1007/978-3-540-34282-3_10, © Springer-Verlag Berlin Heidelberg 2008 
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of replacement parts and repair labor are determined. In providing security 
for the maintenance, it is necessary to have the required replacement parts 
in the required amount and quality at hand analog to the requirements of 
material logistics [10.26]. This includes logistic aspects such as transporta-
tion and effective storage. Similar to the reliability and availability, main-
tainability can be described as a probability. 

One assumes that the goal of general maintenance work is that the re-
quired availability is reached or maintained at its current status. 

10.1.1 Maintenance Methods 

Maintenance methods can be distinguished as methods for preventive 
maintenance, for corrective maintenance and for condition-based mainte-
nance. These methods will be described in detail in the following sections. 

10.1.1.1 Preventive Maintenance 

Preventive maintenance deals with maintenance methods which are car-
ried out preventively, that is, at a predetermined time or periodically after a 
certain amount of operational hours. Preventive maintenance methods 
allow for the determination and evaluation of the current status as well as 
for the preservation of the nominal status of facilities, machines and com-
ponents [10.37]. 

Preventive maintenance methods include: 

• service: methods for the preservation of the nominal status, e.g. clean-
ing, refilling of lubricants and cooling mediums, adjusting, calibrating.  

• inspection: methods for the determination and judgment of the current 
status, e.g. inspection of wearout, corrosion, leaks, loosened connec-
tions, periodical or continual measuring and analysis.  

• overhauling: disassembling until certain components, assemblies or 
elements can be reached and if needed, changing of components, as-
semblies and components.  

 
Preventive maintenance methods are most often carried out without con-

sideration of the current status of the machine. Preventive work is work 
done on a machine even though there is no current technical disturbance. 
The purpose of preventive maintenance is to avoid failures and break-
downs caused by wearout, aging, corrosion and contamination as well as to 
prevent any failure effects which could arise from these circumstances. 
Thus, preventive maintenance can be seen as precautionary maintenance.  

intervals, extent of service, repair priorities and repair capacities in the form 
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10.1.1.2 Condition-Based Maintenance 

Condition-based maintenance avoids exact inspection and overhauling 
intervals and thus avoids the periodical renewal of fully functional compo-
nents and assemblies [10.37]. Furthermore, a reduction in the availability 
due to preventive maintenance carried out too often can be avoided. With 
continuous or periodical measurements and observations of certain values 
on components, assemblies and components and how these values have 
altered, one is able to determine wearout during operation. These meas-
urements, observations and evaluations are known as condition monitor-
ing. With condition monitoring it is possible to reduce the expenses of 
repairs and maintenance without compromising the reliability and security 
of a product. 

In [10.39], the term condition-based maintenance is defined.  The goal of 
condition-based maintenance is to plan and carry out maintenance methods 
optimally regarding time, quality and costs. With this maintenance strategy 
an intensive inspection of critical components and equipment during op-
eration is carried out (e.g. with automatic measuring devices). Thus, it is 
possible to predict when a failure could occur. With this prediction the 
required maintenance methods can be applied, for example, the renewal of 
parts, before a failure occurs. 

The application of condition-based maintenance is suitable for systems 
and components for which the operational conditions can be measured and 
inspected over time. Inspection techniques for condition-based mainte-
nance include among others: 
 
• thermographical inspection, 
• nondestructive material tests, 
• oil analysis and 
• vibration analysis. 

 
Indicators on vehicle break systems measure the extent of the brake lin-

ing wearout, thus allowing for a prediction of the remaining lifetime before 
a renewal of the brake lining is necessary. Figure 10.1 shows the relative 
frequency of procedures for machine status monitoring which are applied 
today. Bearing diagnoses and the examination of machine oscillations are 
among the most commonly used procedures. 
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Figure 10.1. Procedures for machine condition monitoring [10.9] 

On the one hand, these procedures require much work due to the re-
quired data gathering and evaluation, and on the other hand, they lower the 
total maintenance costs considerably without interfering in any way with 
the safety or reliability of the device. For this reason, many American air-
lines have applied this strategy with success [10.8]. 

10.1.1.3 Corrective Maintenance 

Corrective maintenance methods are required for partial and total fail-
ures of facilities, devices and components. Such methods serve to the rees-
tablishment of the nominal condition [10.37] and are described by the term 
repair [10.7]. It should be noted that preventive maintenance methods such 
as inspections may incorporate corrective maintenance. 

If only one maintenance level is present, corrective maintenance meth-
ods can be divided into the following individual methods: 

• Determination of the interference or failure (failure recognition)*, 
• Notification of the responsible maintenance personnel, 
• Maintenance personnel come to the site of interference, 
• Preparation of tools and test control units, 
• Localization of the interference on the level of the device or component 

(failure localization)*, 
• dismantle of the defective device (component)*, 
• Preparation of the required replacement parts, 
• Replacement of the defective device (failure elimination)*, 
• Adjustment, calibration and testing of the repaired device (component)*, 
• Assembly of the repaired device (component) in the facility*, 
• Functionality test of the complete facility*. 
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Similar to the preventive maintenance methods, this method requires a 
certain amount of time, personnel and material. The sum of the time re-
quired for each individual method gives the total down time. The actual 
repair time is made up of the time required for those individual methods 
denoted with a *. 

10.1.2 Maintenance Levels  

If several maintenance levels are present, the defective device (compo-
nent) is replaced by a new, fully functional device [10.37]. The defective 
device enters a maintenance cycle. Thus, the down time and repair time are 
decreased for the facility; however, there is no reduction in the total main-
tenance work. 

Decisive criteria for the introduction of repair levels are, for example, the 
effects on the availability and the on-site repairability [10.8]. 

10.1.3 Repair Priorities 

The assignment of repair priorities is suggested if one system component 
is more important than another one. The significance of a component is 
defined by the system operator. Economically speaking, the most signifi-
cant component is the component whose failure leads to the highest costs.  
This can be clarified very well by examining a conveyor belt facility. A 
conveyor belt consists of a motor as an actuation unit (component 1) and 
three conveyor belts working parallel to one another (components 2-4), 
which are driven by the actuation unit. The corresponding reliability block 
diagram is shown in Figure 10.2. 
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Figure 10.2. Reliability block diagram of a conveyor belt facility 
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If the motor fails, then the complete facility stops. If, however, only one 
conveyor belt fails, the remaining two belts continue to rotate and the op-
erator of the facility continues to win financial revenues. In this example it 
is clear that the motor is the component with the highest repair priority, 
since it is the most significant component for the profit of the facility. 

10.1.4 Maintenance Capacities 

In stochastic processes commonly used for the calculation of the attain-
able availability (renewal process, Markov process, …), it is always as-
sumed that all required maintenance methods are carried out without any 
delay [10.5,  10.30,  10.43]. However, in reality this is seldom the case, 
since an economical compromise must always be made for the assessment 
of the maintenance capacities between the complication involved in the 
preparation of maintenance capacity (infrastructure, personnel, tools and 
devices, replacement parts) and waiting times caused by the momentary 
lack of required maintenance capacities. 

Thus, limited maintenance resources must be considered in order to cre-
ate a model of a technical system, which is close to reality. This can be 
done with the implementation of repair teams and/or stocking up on re-
placement parts and further maintenance resources. 

10.1.4.1 Repair Teams 

The type and length of preventive and corrective maintenance work can 
be estimated by a maintainability analysis [10.8]. From the analysis it is 
possible to derive the required number of personnel and their qualifica-
tions. Repair teams are organized for the maintenance work within the 
framework of the maintenance strategy. These teams are generally limited 
in size. 

10.1.4.2 Fundamentals of Replacement Part Stock 

According to Pfohl, “stock is a buffer between input and output flows of 
material”. Within the realm of maintenance, material, here, is replacement 
parts required for the maintenance methods. Economically, an unnecessar-
ily large storage is negative, due to the high costs caused. Thus, the goal is 
to conduct an optimal stock management for the needs of the maintenance.  
Several basic principles for stockkeeping will be discussed in the follow-
ing sections. 
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Use of Storage 
Stockpiling replacement parts in storage provides the following advan-

tages: 

• Prevention of waiting times: waiting times avoided by the immediate 
availability of the replacement parts for unexpected failures.  

• Size digression effects: storage allows the opportunity to take advantage 
of so-called size degression effects, for example, quantity rebates.  

• Storage used as a protection against prognosis uncertainty.  
• Storage used for long-term assurance of replacement part availability.  

The Storage Function 
Now, the basic terms related to storage will be further explained. Figure 

10.3 shows storage as a function of time S(t). 
Storage S(t) contains Snominal replacement parts at the point in time t = 0. 

The removal of replacement parts as needed by the repair teams results in a 
continuous decrease in stock. If the storage falls below a certain storage 
limit Sorder, then a certain quantity of replacement parts should be reor-
dered. The time torder, at which the reordering takes place, is called the 
order point.  The amount of replacement parts ordered is the order quantity 
Norder. Until the order quantity arrives, a demand for replacement parts 
during the time between “order placed” and “order arrived” is estimated. 
The order point should be chosen so that the security storage SS is not 
reached before the reordered replacement parts have arrived. Due to 
imponderability, each storage is provided with security storage. 
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Figure 10.3. Storage function 

The order quantity Norder is determined as the difference between the 
nominal storage Snominal and the security storage SS: Norder = Snominal – SS. If 
the order quantity is estimated correctly, then the nominal storage Snominal is 
reached at the point in time tdelivery when the replacement parts are deliv-
ered.  

10.1.5 Maintenance Strategies 

According to DIN 31051 [10.14], maintenance methods include the co-
ordination of maintenance goals to the company’s goals and to the deter-
mination of the corresponding maintenance strategy. The optimal mainte-
nance strategy is the result of a conflict of goals between achieved avail-
ability of a facility and the required maintenance costs. 

The maintenance strategy determines the following parameters for the 
maintenance of a system and its components: 

• type and frequency of maintenance measures taken (i.e. inspection in-
tervals and repair complexity), 

• strategy of replacement parts storage, 
• quantity and qualification of the repair teams, 
• repair priorities, 
• maintenance levels. 
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The maintenance strategy makes up the fundamental of maintenance, as 
shown in Figure 10.4.  
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Figure 10.4. The three columns of maintenance 

Maintenance methods can be applied according to the following strate-
gies: 

• exclusive corrective maintenance methods, 
• maintenance methods with preventive monitoring, 
• exclusive preventive maintenance methods, 
• combination of preventive and corrective maintenance methods, 
• condition-based maintenance. 

10.2 Life Cycle Costs 

Reliability, maintainability and availability have a large influence on the 
costs which occur during the product use. In order to asses the use and 
profit of reliability methods, the consideration of cost aspects is required. 
Therefore, the concept of life cycle costs will now be more closely ob-
served. The portions of life cycle costs, which can be directly influenced 
by reliability engineering, are the reliability costs and the maintenance 
costs. 
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The time span from the first idea or contract during the development, 
production and use up to the disposal of a product is characterized as the 
life cycle of a product or as the product lifetime. During this time, costs 
continually accrue, which the user must bear directly (i.e. in the form of 
operational costs) or indirectly (i.e. production costs above the acquisition 
price). The sum of these costs is known as life cycle costs, which include 
all costs incurred by the product user due to purchase costs as well as costs 
incurred during the use of the product (facility, machine, or device) in the 
course of the product lifetime. 

The main purchase criterion for a customer is often only the purchase 
price. However, with this attitude some operators have suffered “ship-
wreck”. The difficulty in the incurred life cycle costs is exemplified by the 
representation of a cost iceberg in, see Figure 10.5. The life cycle costs 
LCC consist of purchase costs, non-recurring costs, operational costs, 
maintenance costs and miscellaneous costs. 
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operating costs (energy,
operating materials, 
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environment and
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installation

single costs for 
initiation, educate

 
Figure 10.5. The iceberg of life cycle costs from the view of the user  

The accrual of costs is more simply represented in Figure 10.6, where 
the summed costs are shown over the length of the product lifetime. 
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Figure 10.6. Life cycle costs during the product lifetime (without miscellaneous 
costs)  

Here, despite relatively low design and design costs, rapidly increasing 
costs can be determined for the product during its later use. The purchase 
price can be seen as the investment costs of the user, here given as a de-
fined amount without interest. During the utilization period of the ma-
chine, operation costs and maintenance costs also incur, which continually 
increase until the utilization period comes to an end, thus playing a fairly 
significant role in the investment costs. The goal of cost optimal develop-
ment (value management) is the minimization of the life cycle costs in-
curred during the use of a product. Often, the user is not aware where the 
main portions of life cycle costs lie. The life cycle costs are strongly de-
pendent upon the variables reliability and maintenance. 

Failure costs also include costs caused by production failures during un-
availability of a facility. For facilities relevant to security, compensation 
costs can also incur in the case of a damage event. 

Each product type possesses its own specific life cycle cost structure, as 
represented in Figure 10.7. 
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Figure 10.7. Structure of life cycle cost portions for various products  

In this figure several portions of life cycle costs are shown. For simple 
devices, for example a screw wrench, only investment costs and disposal 
costs occur, e.g. neither operational nor maintenance costs incur. For vehi-
cles, however, all three cost types are relevant. The dominating costs for a 
water works pump are the energy costs (approx. 96%). 

The unavailability of a product can influence its LCC significantly.  
Therefore, the availability of a product must be optimized in order to reach 
the lowest resulting LCC. Figure 10.8 shows the relationship between 
availability and the LCC in a simplified form. High reliability and quick 
maintainability lead to increased purchase prices. Likewise, the better the 
maintenance organization is formed, the higher the maintenance costs are.  
High investments in these two cost elements result in an increasing avail-
ability. At the same time, the costs caused by down time decrease with 
increasing availability. 

The sum of purchase and maintenance costs along with down time costs 
minimizes at a certain availability Aopt. At this point the lowest life cycle 
costs are reached with the optimal availability. 
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Figure 10.8. Simplified relationship between availability and life cycle costs  

 
10.3 Reliability Parameters 

Normally, a facility is not in operation at all times. Down time is caused 
by failures or preventive maintenance. Delays result from waiting for 
maintenance personnel or for missing replacement parts. Individual time 
periods can be assigned to certain conditions. 

10.3.1 The Condition Function 

For any system, a flow of events is yielded over time due to the failure 
behaviour of components and pending maintenance methods. Such a flow 
of events is shown as an example in Figure 10.9.   

The various conditions can be represented by a condition indicator c(t), 
which can assume various values over time. By assigning the condition 
indicator the following values:  
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then Figure 10.9 can describe a possible condition function of a system 
over time: at the time t = 0 the system begins operation. The system is 
active until the failure of one of its components. A renewal of the defect 
component is required because of the failure, which means that the com-
ponent is replaced by a new component. Since the required replacement 
part is not available, it is necessary to wait upon its arrival. Because the 
repair personnel are needed more urgently elsewhere, it is also necessary 
to wait for their arrival. Only after both have arrived is it possible to pro-
ceed with the actual repair procedure. After all repairs are concluded, the 
assembly returns to operation. Due to a planned preventive shutdown of 
the facility within the realm of the maintenance strategy, the facility again 
enters a period of down time in order to carry out maintenance included in 
the maintenance plan. Since this inspection work has already been care-
fully planned, no delay due to missing parts is caused. After the inspection 
work has been completed, the facility finally enters full operation. 
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Figure 10.9. Example of a flow of events over time with respective conditions  

The condition function over time can be divided into certain activities 
and delays: 

• Supply Delay Time, SDT: includes waiting on production and/or deliv-
ery of replacement parts, administrative (management) cycle delays, 
production delays, purchasing delays, and transportation delays. For the 
most part, these times are influenced by the spectrum and quantity of 
replacement parts in storage, which are available for maintenance. The 
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logistical delay time disappears if the replacement part is directly avail-
able.  

• Maintenance Delay Time, MDT: the waiting time for maintenance ca-
pacities or maintenance provisions. This includes time needed to inform 
the necessary persons as well as travel time. Maintenance capacities are 
personnel, testing and measuring devices, tools, manuals or other tech-
nical data. Provisions are repair workshops, test stands, airplane han-
gars, etc. The maintenance time is influenced by the amount of available 
repair channels. A repair channel is defined as collectivity of all mainte-
nance capacities and provisions required for the successful execution of 
a repair. If a repair channel is directly available when a failure occurs, 
the maintenance delay time disappears. 

Since supply and maintenance delay time are influenced by external pa-
rameters, they do not belong to the system characteristics, which means 
that they cannot be influenced by means of design.   

10.3.2 Maintenance Parameters 

The time required for all activities and delays involved in maintenance 
methods are not uniquely defined, but rather can vary.Thus, they are char-
acterized as random variables, which are again characterized by the main-
tenance parameters. 

Similar to reliability, maintainability can also be understood as a prob-
ability. Maintainability can be defined as follows [10.7]: 

The maintainability describes the probability that if the maintenance 
is carried out under defined material and personnel conditions, then 
the required time period for a repair or for an inspection is shorter 
than a given time interval. 

The random variable τM is the duration of the maintenance methods, as 
shown in Figure 10.10. The index M stands for maintenance. 
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Figure 10.10. Duration of the maintenance methods as a random variable  

The maintainability seen as a random variable encompasses not only the 
actual maintenance work, but also the entire timeframe between failure 
recognition (shutdown) of the observed unit and its reconnection (includ-
ing delay times for the provision of replacement parts or measuring de-
vices, breaks, administrative work, etc.). 

The maintenance parameters are defined analogous to the failure proc-
ess. The distribution function of the maintenance duration τM  

)()( tPtG M ≤τ=  (10.1) 

is known as the maintainability G(t). The respective density function is the 
maintenance density g(t). The maintenance rate µ(t) has the meaning 

µ(t) = P(M ends in [t, t + dt] | M while [0, t]). 

M: maintenance 

The expected value E(τM) of the maintenance duration τM is defined as 

( )∫∫
∞∞

−==τ=
00

)(1)d()( dttGtttgEMTTM M . (10.2) 

The abbreviation MTTM stands for Mean Time To Maintenance and 
points to the average maintenance duration τM. 

The lognormal distribution is often used for the description of the main-
tainability. Figure 10.11 represents an example of the density function of 
the maintainability as a lognormal distribution and as an exponential dis-
tribution for the same MTTM. 
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Figure 10.11. Maintainability G(t) as a lognormal and exponential distribution for 
the same MTTM 

Maintenance methods can be divided into preventive and corrective 
methods. Variables for preventive maintenance receive the index PM 
(Preventive Maintenance) while variables for corrective maintenance re-
ceive the index R (Repair). Depending on the type of maintenance meth-
ods, the respective maintenance durations, τPM for preventive maintenance 
and τR for corrective maintenance, are used. In most German literature, 
preventive methods are brought under the term “inspection”. Conse-
quently, the maintenance is divided into serviceability GPM(t) and main-
tainability GR(t) (repairability) [10.7].   

The following terms are common in characterizing the service and main-
tenance duration analog to Equation (10.2) [10.7]: 

• MTTPM (Mean Time To Preventive Maintenance) for the average ser-
vice duration and 

• MTTR (Mean Time To Repair) for the average repair duration 
 

In Table 10.1, the described survival or failure behaviour parameters are 
summarized along with the maintenance parameters.  
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Table 10.1. Summary of the survival parameters and the maintenance parameters  

Random Variables 

parameter 

lifetime mainte-
nance 

duration 

service 
duration 

repair  
duration 

symbol for random vari-
able 

τL τM τPM τR 

distribution function F(t) G(t) GPM(t) GR(t) 

survival probability R(t) - - - 

density function f(t) g(t) gPM(t) gR(t) 

exit risk λ(t) µ(t) µPM(t) µR(t) 

expected value MTTF MTTM MTTPM MTTR 

 
The maintainability serves qualitatively as a measurement for the sim-

plicity with which the maintenance work on a system or its components 
can be carried out. Due to the direct influence of the availability of a ma-
chine and the rash increase in maintenance costs, the maintainability is of 
great significance. Maintainability is already “designed into” a system 
during the development phase. The maintainability achieved during opera-
tion is equally dependent upon the installation of the machine or facility 
and upon the organization of the maintenance.Design measurements which 
directly influence the maintainability of a component are [10.25]: 

• the integration of function tests (BIT’s), 
• modular design, 
• technical design of a component (i.e. electrical vs. mechanical), 
• ergonomic factors, 
• labeling and coding, 
• displays and indicators, 
• standardization, 
• interchangeability/compatibility. 

The time involved in the discovery and removal of an interference can be 
remarkably reduced by already observing these aspects during the design 
phase. 
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10.3.3 Availability Parameters 

The duration of application for a technical system is normally not ended 
by the first failure of an element. Rather, a system is brought back to its 
operational condition with the help of the maintenance methods. The qual-
ity of the reliability and maintainability greatly influence the availability of 
a system. 

The general definition of availability can be found in the references [10.7 
and  10.27]: 

The availability is the probability that a system is in a functional 
condition at the time t or during a defined time span, under the con-
dition that it is operated and maintained correctly. 

The active operational condition is defined as c = 1 in the condition dia-
gram. The availability A(t), or to be more exact, the point availability 
[10.7] is defined under the following condition for the expected value of 
the condition indicator c(t): 

. 
(10.3) 

The following relationship applies for the average availability AAv(t): 

∫=
t

Av xxA
t

tA
0

d)(1)( . (10.4) 

The representation of the average availability can be simplified to the in-
terval availability [10.25] 

∫−
=

2

112
d)(1)(

t

t
Int xxA

tt
tA . (10.5) 

The interval availability describes the average availability during the in-
terval [t1, t2]. For longer times t, the function of the (point) availability and 
the average availability converge to a constant value which is independent 
of the initial conditions at the point in time t = 0. 

In general, the steady state availability AD can be defined as 

MTTF
MMMTTF

MTTFtAA
tD

+
=

+
==

∞→
1

1)(lim  
(10.6) 

with the average down time M .  

( ) ( ) 1 ) ( )( t c t A = = )(0 tcEt  ==as good as new at the 
point in time 
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Figure 10.12 shows an example of the point availability and the steady 
state availability of a component. The failure behaviour of the component 
is described by a Weibull distribution with b = 3.5 and T = 1,000 h. The 
distribution function of the repair duration is a Weibull distribution with 
b = 3.5 and T = 10 h. The parameters have been specifically chosen so that 
the transient effect can be clearly seen in the initial status followed by a 
transition to a constant value for the steady state availability.   
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Figure 10.12. Point availability and steady state availability  

Depending upon which time intervals are considered for the average 
down time, the following types of steady state availability are defined. 

The inherent steady state availability )(i
DA  is defined as [10.25,  10.47],  

MTTRMTTF
MTTFA i

D +
=)(  with M  = MTTR. (10.7) 

The inherent steady state availability regards the failure behaviour of a 
system in connection with corrective maintenance. It is based on the distri-
bution functions for the failure probability F(t) and for the maintainability 
GR(t). Thus, this availability can be used as an assessment criterion for the 
quality of a product. 

The technical steady state availability )(t
DA  is defined as [10.38] 

MTTRMTTPMMTTF
MTTFA t

D ++
=)(   (10.8) 
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with M  = MTTM = MTTPM + MTTR.  
It considers the failure behaviour of a system, preventive maintenance 

methods as well as repairs. 

The operational steady state availability )(o
DA  is defined as [10.38] 

MDTSDTMTTRMTTPMMTTF
MTTFA o

D ++++
=)(  

with M  = MTTPM + MTTR + SDT + MDT.
 

(10.9) 

 The supply delay time SDT essentially includes waiting on the produc-
tion or delivery of replacement parts. Maintenance delay MDT includes 
waiting on maintenance capacities or provisions. The operational availabil-
ity is thus a useful assessment criterion to estimate the quantity of re-
placement parts and the number of repair channels. Along with design 
parameters (reliability and maintainability), the operational availability 
considers the quality of the maintenance organization. 

The total steady state availability )( p
DA  is the most general way to de-

scribe the steady state availability. It considers both the failure behaviour 
of a system, all maintenance methods and administrative down times as 
well as any logistic delays. In addition, external causes for unavailability 
are considered which cannot be controlled by the system operator. 

Table 10.2 summarizes the various definitions of steady state availabil-
ity. The parameters are marked as they apply to each respective steady 
state availability. Furthermore, the measured value and/or expected value 
is given for each parameter. 
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Table 10.2. Overview of the steady state availabilities  

design related 

 
reliability maintain-

ability 

preven-
tive 

mainte-
nance 

availabil-
ity of 

replace-
ment 
parts 

repair 
teams 

mainte-
nance 

provis-
ions 

external 
influ-
ences 

AD
(i) 

  - - - - - 
AD

(t) 
   - - - - 

AD
(o)       - 

AD
(p) 

       
pa-
rame-
ter 

MTTF MTTR MTTPM SDT MDT - 

10.4 Models for the Calculation of Repairable Systems 

The first failure of a machine does not normally result to a shutdown in 
its operation. Rather, its functionality is sustained over a longer time span 
with the help of maintenance methods such as inspection and repair. A 
system is characterized as repairable if it is integrated into a maintenance 
process. Various calculation models have been developed for the analysis 
of the reliability and availability of repairable systems. These models vary 
significantly in their complexity; to the effect that many models limit 
which maintenance events can be represented. Thus, the second part of this 
chapter will introduce an overview of possible calculation models, with 
which parameters of a system can be determined. 

The models to be discussed have been taken for the most part out of the 
references [ 10.30,  10.43, and  10.50]. 

The reliability of a component can be improved by maintenance methods 
which are carried out at certain predetermined intervals. 

Repairable systems can be dealt with according to the Markov method.  
With this method it is possible to determine the availability of a system or 
component. However, a fundamental pre-condition for this method is that 
the failure and repair behaviours must be able to be described by exponen-
tial distributions. 

If a system consists of repairable system elements independent from one 
another, then the Boole-Markov model can be used for the calculation of 
the steady state availability of this system. 

The common renewal process provides an approximation for the calcu-
lation of required replacement parts over time in order to uphold the 
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If the duration of the renewal or repair of a failed component is not ne-
glected, then an alternating renewal process comes into play. With this 
process it is easier to simulate reality, since normally the discovery of a 
defective component, as well as its repair or renewal, requires a certain 
amount of time.  Thus, the availability can be calculated. 

For systems which can be described by renewal processes, it is hardly 
necessary to limit the calculation model to certain distributions. However, 
it is only possible to describe simply structured systems with these proc-
esses. The number of statuses is limited to two – “in operation” and “in 
repair”. With the semi-Markov process more than two statuses can be rep-
resented, for example, a third condition: “in inspection”. 

System transport theory yields the most general description possibility 
for technical systems. It allows for the modeling of complex systems with 
arbitrary structures, arbitrary distribution functions for the description of 
the failure and repair behaviour of components and arbitrary interactions 
of components within a system. A multitude of maintenance strategies can 
be represented and the replacement part logistics can be taken into consid-
eration as well. 

10.4.1 Periodical Maintenance Model  

Often, the reliability of complex systems or components can be im-
proved with the help of preventive maintenance, where the negative influ-
ences of aging and wearout can be avoided. Furthermore, the time of use 
and application can be considerably increased if a unit is well maintained. 

10.4.1.1 Fundamentals 

The models described in the following sections assume that the main-
tained unit is brought back to a “good as new” condition after each main-
tenance. This means that the maintenance methods include renewal and/or 
overhauling. R(t) is the reliability of a unit with preventive maintenance. 
The maintenance methods are carried out according to predetermined 
maintenance intervals TPM (PM = Preventive Maintenance) independent of 
the status of the unit. 

maintenance process for a component or system. In this case, maintenance 
signifies the replacement of a defective component with a brand new com-
ponent. However, the duration of the renewal is neglected in the common 
renewal process. 
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In order to determine the reliability of an element with preventive main-
tenance RPM(t), it is necessary to consider a maintenance plan over time as 
shown in Figure 10.13. 
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Figure 10.13. Maintenance plan over time 

The following assumptions form the basis for the maintained model:  

• The down time required for the renewal is negligible. 
• After every renewal, the observed unit is brought back to its original 

status. 
• The renewal is carried out periodically in constant intervals TPM. 
• The failure behaviour before and after inspection is stochastically inde-

pendent. 
• Even if a failure occurs after the kth renewal during the ensuing opera-

tion period, the next renewal will first take place at the next mainte-
nance interval point (k+1)⋅TPM. 

Since the flow of events is seen as stochastically independent, the result-
ing reliability function for an inspected unit is [10.28] 

)()()( PM
k

PMPM TktRTRtR ⋅−⋅=   
for PMPM TktTk )1( +≤≤⋅ and k = 0(1)∞. 

(10.10) 

The term R(TPM)k describes the probability that k renewal periods have 
succeeded without any failures having occurred. R(t − k⋅TPM) is the sur-
vival probability in the operation period after the last (k th) completed 
maintenance. 
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The expected value of a component after each periodical renewal 
MTTFPM is [10.25] 
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−
==

∫
∫
∞

. 
(10.11) 

10.4.1.2 Periodical Renewal of Components with Constant 
Failure Rates 

If the failure behaviour of an element can be described by an exponential 
distribution, then the periodical renewal does not influence the failure be-
haviour of that element, since 

)()( )( tReeetR tPMTktPMTk
PM ==⋅= ⋅λ−⋅−λ−⋅λ⋅−  (10.12) 

This means that the failure behaviour is the same with or without peri-
odical renewal. For constant failure rates it is not possible to detect any 
aging appearances, thus it is easy to understand why the failure behaviour 
is not affected in this case. 

10.4.1.3 Periodical Renewal of Components with Time Depend-
ent Failure Rates  

If the failure rate is time dependent, then the failure behaviour of the 
component is influenced by the length of the renewal interval. If the failure 
behaviour of the component is described by a three parametric Weibull 
distribution, then the reliability RPM(t) is 
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for k⋅TPM ≤ t ≤ (k +1)TPM. 

(10.13) 

The reliability function for a component with and without periodical re-
newal is shown in Figure 10.14 (shape parameter b = 2.0, characteristic 
lifetime T = 2,000 h and failure free time t0 = 500 h). Here, the mainte-
nance interval is given as TPM = 1,000 h. 

In Figure 10.14, a reliability function is represented according to Equa-
tion (10.13). After each renewal, a break occurs in the survival probability 
function, which in turn leads to discontinuous failure densities and failure 
rates. The renewal is executed at times TPM, 2·TPM, 3·TPM,.... The function 
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RPM(t) clearly lies above the function R(t), which means that the survival 
probability with periodical renewal is much greater as the probability 
where no measures are taken.  
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Figure 10.14. Reliability with and without periodical renewal 

 
Figure 10.15 shows the expected value MTTFPM (standardized to the 

characteristic lifetime T) of a component as a function of the shape pa-
rameter b and the maintenance interval TPM as a parameter. Here, a failure 
free time t0 = 0 for the component was assumed. 

It is shown that for a shape parameter b > 1, the expected value for pre-
ventive maintenance MTTFPM is greater as the MTTF value, which is de-
termined without maintenance (TPM = ∞). For any given shape parameter 
b, MTTFPM increases strongly dependent upon the maintenance interval 
TPM.  In general, the greater b is, and thus the greater the influence of aging 
and wearout on the failure cause, the greater the positive effect is, with 
which periodical renewals can be carried out. For shape parameters b < 1, 
this effect is reversed, which means that the average lifetime is decreased 
by renewals. For the shape parameter b = 1, as already shown in Section 
10.4.1.2, maintenance methods have no influence on the reliability and 
thus have no influence on the average lifetime. 
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Figure 10.15. MTTFPM of a component as a function of the shape parameter b and 
the maintenance interval TPM  

Example: 
For a certain component, a failure behaviour in the form of a Weibull 

distribution with the parameters b = 2.7 and T = 1,000 h was determined 
through lifetime tests. The average lifetime MTTF is 889.3 h, however, an 
average lifetime of 2,000 h is required. This required average lifetime can 
be reached with the help of periodical renewals within the realm of main-
tenance methods. What maintenance interval is required in order to reach 
the desired MTTFPM? By observing the intersection of given shape parame-
ters b and desired MTTFPM values in Figure 10.15, we see that 
TPM = 0.7 ⋅ T = 700 h. 

In Figure 10.16 the steady state availability AD of a component according 
to Equation (10.7) is shown as a function of the shape parameter b with the 
maintenance interval TPM as a parameter. Here, it is assumed that the pre-
ventive renewals do not require any additional down time, but rather they 
are carried out during shift breaks. If an (unexpected) failure occurs, then 
the repair of the failed component begins immediately. The average repair 
time for the component is estimated at MTTR = 0.1 ⋅ T.  
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Figure 10.16. Steady state availability of a component with periodical mainte-
nance with an average repair time of MTTR = 0.1 ⋅ T 

Example: 
The component from the above example with MTTR = 0.1 ⋅ T = 100 h 

yielded a steady state availability of AD = 89.89 % according to Equation 
(10.7). After the introduction of a maintenance program, a steady state 
availability of AD = 95.24 % can be achieved. This results in an increase in 
steady state availability of 5.95 %. 

10.4.2 Markov Model 

With the Markov model [10.7,  10.31,  10.35] it is possible to deal with 
repairable systems. The goal of this model is to determine the availability 
of a system or component. The following requirements have been estab-
lished for the simplification of the model and its calculations: 

• The unit to be observed switches continually between a state of opera-
tion and repair. 

• After each maintenance action the repaired unit is as good as new. 
• The time required for operation and repair for each unit observed is 

continuous and stochastically independent. 
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• The influence of any switch device is not taken into consideration. 

The Markov method is based on the Markov process, which is a stochas-
tic process X(t) with a limited number of statuses (or states of condition) 
C0, C1, ..., Cn, for which the further development of the process is only 
dependent upon the present condition and the time t for each arbitrary time 
t. This means that only those systems can be dealt with using the Markov 
model, whose elements possess constant failure and repair rates. Further, 
the method is based on an equilibrium between the possible alterations 
between statuses in the form of equilibrium equations. The result is a sys-
tem of consititutive differential equations, out of which the availability of 
the observed unit can be determined as a function of time. 

10.4.2.1 Availability of an Individual Element  

To begin with, the Markov method procedure will be shown step by step 
on an individual element.  

a) Defining the Status 
Each element can only assume one of two statuses: either “functional” or 

“failed”. 

• status (or condition) C0:  the element is functional and in operation. 
• status (or condition) C1:  the element has failed and is currently in a  

     state of repair. 

The corresponding status probabilities are signified by P0(t) and P1(t). 

b) Creating Status Graphs 
The status graph represents the change in status for an element. An ele-

ment crosses from one status to the next with a certain transition probabil-
ity. The sum of the transition probabilities possessed by all arrows pointing 
away from a node (status) is always equal to 1. To simplify the Markov 
graph, the transition rates, failure rate λ and repair rate µ, are given. Such a 
Markov graph is shown in Figure 10.17 for an individual element. 

 

Z1Z0

1-λ 1-µ

µ

λ

 
Figure 10.17. Markov graph for an individual element 
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c) Deriving the Constitutive Differential Equations 
To derive the status differential equations it is first necessary to balance 

the probabilities for all possible changes in status. A change in status prob-
ability can be calculated by the addition of all transition probabilities. 
These transition probabilities can be obtained from the multiplication of 
the status probabilities with the corresponding transition rates. All arrows 
pointing away from a status are negative and all arrows pointing to a status 
are positive. This results in the following two differential equations in the 
case of an individual element: 

)()(
d

)(d
10

0 tPtP
t
tP

⋅µ+⋅λ−=  and (10.14) 

)()(
d

)(d
01

1 tPtP
t
tP

⋅λ+⋅µ−= . (10.15) 

d) Standardization and Initial Conditions 
Since the element must be located in one of the statuses at all times, the 

sum of all status probabilities at any point in time is always 1. Thus, the 
standardization condition is 

1)()( 10 =+ tPtP . (10.16) 

The initial condition tells which status the element is in at the time t = 0. 
In the beginning, the observed element is normally functional and as good 
as new. Thus, the initial conditions are 

1)0(0 ==tP  and 0)0(1 ==tP . (10.17) 

 
e) Solving for the Status Probability 

The following equation for P0(t) is obtained from the differential Equa-
tions (10.14) and (10.15), the standardization condition (10.16) and the 
initial conditions (10.17) 

( ) tetP ⋅µ+λ−⋅
λ+µ

λ
+

λ+µ
µ

=)(0 . (10.18) 

The status probability is won with help of the standardization condition 

)(1)( 01 tPtP −= . (10.19) 
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f) Determining the Availability 
The availability A(t), which an element possesses at the point in time t in 

a functional operational state, is equal to the status probability P0(t): 

)()( 0 tPtA = . (10.20) 

The unavailability U(t) is the complement of the availability 

)()(1)( 1 tPtAtU =−= . (10.21) 

Stationary Solution 
The availability converges to the limit of the stationary solution for 

t → ∞.  This steady state availability AD is normally expressed by the 

• expected value of the operation duration MTTF = 1/λ (Mean Time To 
Failure) and the 

• expected value of the repair time MTTR = 1/µ (Mean Time To Repair)  

and is of great practical importance in maintenance: 
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==
∞→ 1

1)(lim  . 
(10.22) 

The steady state availability is only dependent upon the quotient 
MTTR/MTTF, as graphically shown in Figure 10.18. As this quotient be-
comes larger, the steady state availability becomes smaller. 
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Figure 10.18. Steady state availability AD as a function of the quotient 
MTTR/MTTF  
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Example: 
Here, in order to exhibit the Markov method, an element is dealt with 

whose failure and repair behaviours are exponentially distributed. The 
availability is shown for various repair rates with a constant failure rate λ.  
Table 10.3 shows the various parameters. The determined availabilities 
A(t) are shown in Figure 10.19. 
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Figure 10.19. Availability A(t) for various repair rates µi with a constant failure 
rate λ  

Here, it may be observed that the convergence to the steady state avail-
ability for long periods of time t. For µ = 0, which corresponds to an infi-
nitely long repair duration (MTTR → ∞), the reliability and availability 
coincide. The steady state availability decreases with increasing repair 
duration. 
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Table 10.3. Parameters for the Markov example 

No. λ [1/h] MTTF [h] µ [1/h] MTTR [h] AD [%] 
C1 0.001 1,000 0.01 100 91 
C2 0.001 1,000 0.002 500 66.7 
C3 0.001 1,000 0.001 1,000 50 
C4 0.001 1,000 0 ∞ 0 

10.4.2.2 Markov Model for Several Elements 

When analyzing a system consisting of several elements, it is necessary 
to consider the interaction of all elements to one another. If n elements 
interact with one another, then the Markov model can assume 2n statuses 
for all thinkable combinations of failures and transitions. The simplest 
scenario is a system made up of two elements K1 and K2, for which four 
statuses are possible, Table 10.4.  
Table 10.4. Description of the statuses for a system with two elements  

Condition Description Probability 
C0 both elements K1 and K2 are intact P0(t) 
C1 K1 defect and K2 intact P1(t) 
C2 K1 intact and K2 defect P2(t) 
C3 both elements K1 and K2 are defect P3(t) 

 
Figure 10.20 shows the corresponding Markov status graph with all 

thinkable change overs. The rates λ1 and µ1 describe the transition behav-
iour of the element K1, while λ2 and µ2 describe that of K2. The transition 
from C0 to C3 and from C1 to C2 are not taken into account because such a 
change in the status would mean that both elements would change their 
condition simultaneously. 
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Figure 10.20. Markov status graph for two elements 

The differential system of equations for the condition probabilities again 
results in an equilibrium of the status transitions in the Markov graph.   

Thus: 
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(10.23) 

As before, the standardization condition can be determined as the sum of 
the status probabilities 

1)()()()( 3210 =+++ tPtPtPtP . (10.24) 

Here, the initial conditions are 

1)0(0 ==tP  and 3)1(10)0( =∀== itPi . (10.25) 

Under consideration of the standardization and initial conditions, the dif-
ferential system of equations can be solved, for example, with help of the 
Laplace transformation. However, this solution is very complex and time-
consuming.  
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After extensive calculations have been carried out, the various possible 
status probabilities result to:  
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(10.29) 

In order to determine the availability, it is now necessary to consider the 
system structure. Since we are dealing with two elements, it is possible 
that these elements are connected to one another either serial or parallel. 
The respective availabilities are yielded: 

for a serial connection )()( 0 tPtA =  and (10.30) 

for a parallel  
     connection 

)(1)()()()( 3210 tPtPtPtPtA −=++=
. 

(10.31) 

The status probabilities remain constant for stationary cases, thus, the 
changes in status reach zero: 
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t

 3)1(0=∀i . (10.32) 

Therefore, for stationary cases, the differential system of equations be-
comes a linear algebraic system of equations. Out of Equations ( 10.27) to 
( 10.30), the following stationary solutions are yielded: 
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(10.33) 

This results in relationships between the steady state availabilities for se-
rial and parallel connections for both elements. 
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for a parallel connections 
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Example: 
The failure and repair behaviour of both system components is exponen-

tially distributed. The parameters are given in Table 10.5. 
Table 10.5. Parameters for the failure and repair distributions  

No. Failure Behaviour Repair Behaviour Steady state  
Availability 

 λ [1/h] MTTF [h] µ [1/h] MTTR [h] ADi [%] 
C1 0.001 1,000 0.01 100 90.9 
C2 0.002 500 0.02 50 90.9 

 

The availability Equations (10.30) and (10.31) for serial and parallel 
connections for both components are illustrated in Figure 10.21. 
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Figure 10.21. Availability for serial and parallel connections of two components  
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The steady state availabilities calculated with the Equations (10.34) 
and (10.35) are also given. Here, it may be shown how quickly the station-
ary status is reached. 

10.4.3 Boole-Markov Model  

If a system is made up of repairable system elements independent of one 
another, then the so-called Boole-Markov model can be used, Figure 
10.22. Thus, the repairable system is observed as a system with repairable 
elements. As already seen, the Markov model determines the steady state 
availability of individual system elements. The connections between these 
elements are achieved with the Boolean model. 

 

Z0i Z1iµ i

λ i

K1 K2 Ki Kn

 
Figure 10.22. Boole-Markov model 

Contemporary acceptance of the Markov model for repairable systems 
was limited by the fact that the corresponding elements must possess con-
stant failure and repair rates. For time dependent failure or repair rates, it is 
impossible to solve the status probabilities as functions of time. Thus, in 
the Boole-Markov model only the stationary status, that is the steady state 
availability, is observed. The following time-dependent transition rates 
have been determined for the steady state availability ADi for each individ-
ual element: 
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Here, it is necessary to calculate the expected value of the operating 
hours MTTFi and the expected value of the repair time MTTRi as the ex-
pected value E(t) of the failure or repair distribution. The system steady 
state availability can now be estimated with the help of the Boolean model: 
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parallel system: 
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Example: 
A system made up of three components in serial connection with 

Weibull distributions desicribing the failure behaviour is considered as an 
example for the calculation of system availability. The repair behaviour of 
each component is described by an exponential distribution with a repair 
mean of MTTR = 100 h. Table 10.6 summarizes the parameters for the 
distributions and the calculated steady state availabilities for the individual 
components as well as the system steady state availability.   
Table 10.6. Parameters for the system components – calculation of the system 
steady state availability  

Nr. Failure Behaviour Repair  
Behaviour 

Steady state 
Availability 

 b T [h] t0 [h] MTTF [h] MTTR [h] ADi 
K1 2.0 3,000 0 2,658 100 0.9637 
K2 1.8 3,200 500 2,901 100 0.9667 
K1 1.5 2,500 1,000 2,354 100 0.9593 

System  
Steady state  
Availability:  

 

10.4.4 Common Renewal Processes   

Renewal theory originates from studies of “renewing populstions”. Over 
time, however, renewal theory leaned more towards studies of general 
incidents over the sum of independent and positive random variables in 
probability theory [10.13,  10.14]. Early research in the field of renewal 
theory can be found compiled in the literature by Lotka [10.33].   

Common renewal processes [10.1,  10.2,  10.3,  10.7,  10.13,  10.14,  10.45] 
are also part of the class of stochastic point processes and describe the 
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fundamental principle of an individual component in continuous operation. 
It is assumed that at the end of its lifetime, a failed component is immedi-
ately replaced (renewed) by a new, statistically identical component. For 
common renewal processes, this means that the duration of repair is ne-
glected in comparison to the duration of operation, thus it is necessary that 
MTTF >> MTTR. This simplification results, however, in the fact that the 
availability cannot be calculated with a common renewal process. Despite 
this limitation, we would like to take a closer look at the common renewal 
process. 

10.4.4.1 Time until the nth Renewal 

A common renewal process is symbolically illustrated in Figure 10.23.  
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Figure 10.23. Procedure of a common renewal process 

The points T1, T2, ... are signified as renewal points or regeneration 
points. The value Tn describes the distance from the origin to the nth re-
newal and thus the time until the nth renewal. Renewal processes produce 
sequences of points, whose renewal times are independent of one another – 
thus this process is often characterized as a point process. The lifetimes τn 
are positive, independent random variables, which all possess the same 
distribution function F(t). The following equation is valid for the common 
renewal process: 

∑
=

τ=
n

i
inT

1

, n = 1 (1) ∞ . (10.39) 

The point of origin does not count as a point of renewal. It is an excep-
tion for which T0 = 0. The distribution of the nth renewal, and thus at the 
point in time Tn, is given by the nth convolution power of F(t) 
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)()( )*( tFtF n
n =  (10.40) 

and corresponds to the distribution of the sum of n lifetimes. The nth con-
volution power of F(t) can be calculated recursively with 
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(10.41) 

10.4.4.2 Number of Renewals 

The number of renewal points N(t) during the time span [0, t] is a dis-
crete random variable for which 

 

(10.42) 

for the probability that exactly n renewal points lie between 0 and t, it is 
necessary that ))(()(  n tN P tWn == . This results to the following ex-
pression: 
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+−= . (10.43) 

The probability that no renewals occur between the beginning of opera-
tion of the first component and the point in time t is equal to the reliability 

)()(1)(0 tRtFtW =−= . (10.44) 

10.4.4.3 Renewal Function and Renewal Density 

The renewal function H(t) is defined as the expected value for the num-
ber of renewals in the time span [0, t]. From Equation (10.43) one con-
cludes: 
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The renewal function serves as a foundation for the determination of the 
replacement part demand, since it predicts with a probability of 50% how 
many renewals will be conducted up to the point in time t. That is to say 
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that if the renewal process should be maintained with a probability of 50%, 
then it is necessary to have a total of H(t) replacement components at hand 
at the time t. 

Deriving the renewal function results in the renewal density 
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as an infinite sum of the convolution power of the failure densities. This 
can be recursively calculated with the equation 
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(10.47) 

The expression h(t)dt is the average probability for the number of failures 
during the interval [t, t+dt]. Thus, the renewal density describes the aver-
age number of failures per unit of time. Figure 10.24 illustrates an example 
of the relationship for a normally distributed failure density with µ = 36 h 
and σ = 6 h. 
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Figure 10.24. Renewal density as an infinite sum of the convolution power of the 
failure density [10.28] 
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10.4.4.4 Renewal Equations 

The Laplace transformation of the renewal can be represented as a geo-
metric series [10.6]. By applying the convolution theorem of the Laplace 
transformation to Equation (10.46), the following is yielded:  
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The renewal function results to the following equation under considera-
tion of the integration theorem of the Laplace transformation 
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Another interpretation can be seen by rewriting Equation (10.48) and 
Equation (10.49) to  

)(~)(~)(~)(~ sfshsfsh +=  and (10.50) 

)(~)(~)(~)(~ sfsHsFsH += . (10.51) 

By carrying out the reverse transformation of Equation (10.50) and 
Equation (10.51) while at the same time observing the convolution law of 
the Laplace transformation, the following equations result 
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These equations are called the integral equations of renewal theory or 
simply renewal equations. They often form the point of origin for further 
studies. 

10.4.4.5 Estimation of Replacement Part Demand 

Asymptotes for H(t) have already been discovered for the common renewal 
process according to [10.3]. For large values of time t, these asymptotes 
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The fundamental law of renewal theory allows for further asymptotical 
statements concerning the renewal process. One such important implica-
tion is that the straight line described in the equation below represents the 
asymptote of the curve H(t) 
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 (10.54) 

)(ˆ tH  yields an approximation solution for the calculation of the required 
replacement parts over time in order to maintain a renewal process for a 
component or system.  

10.4.4.6 Comment to Availability 

Since it is assumed in the common renewal process that after a failure 
the component is replaced by a new component without delay, the follow-
ing availability can be assumed for the common renewal process: 

01)( ≥∀= ttA . (10.55) 

10.4.4.7 Analysis of the Common Renewal Process 

The renewal Equations (10.52) and (10.53) are linear Volterra integral 
equations of the 2nd type. The solution of such equations with the applica-
tion of numerical integration procedures is shown in [ 10.30] and [10.27]. 

10.4.5 Alternating Renewal Processes 

If the repair duration or the time for renewal of a failed component is not 
neglected, then one deals with an alternating renewal process [10.1,  10.2, 
 10.3,  10.7,  10.13,  10.14,  10.40,  10.51]. With this process, it is easier to 
model reality, since normally the discovery of a defect component as well 
as its repair or renewal takes a certain amount of time. Thus, it is possible 
to calculate the availability.   

In 1959, Cane [10.10] and Page [10.34] published the first applications 
of alternating renewal processes for problems in animal ethology as well as 
in the inspection of electronic computers [10.13]. 

yield approximations for H(t) as well as for the distribution N(t). Here, it is 
continually necessary that E(τ) = MTTF < ∞ and Var(τ) < ∞. 
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10.4.5.1 Alternating Renewal Process Procedure 

The situation illustrated in Figure 10.25 is modeled on behalf of an alter-
nating renewal process. 

 

2. component
    lifetime τ1,2

repair 
time τ0,1

operation
state

repair state

repair 
time τ0,2

state

time t0

1. component
    lifetime τ1,1

failure reactivation failure1. initiation reactivation

 
Figure 10.25. Alternating renewal process procedure 

The first component begins operation at the time t = 0. This component is 
in an active state of operation during its first lifetime τ1,1. At the end of its 
lifetime, the component fails and is then in a failed status or a repair status. 
During the repair duration τ0,1, the defect component is either repaired or 
replaced by a replacement component. After the repair or renewal has been 
completed, the component immediately returns to a status. After the ran-
dom lifetime τ1,2 has expired, it is again repaired or renewed for the ran-
dom time τ0,2. The lifetimes and the repair durations take place alternating 
to one another. The time T1,n in which each lifetime ends as well as the 
points in time T0,n in which a repair duration ends are shown along the time 
axis in Figure 10.26.  

 

tT1,1 T0,2T1,2T0,1T0,0=0

Z(t)

τ0,2τ1,2τ0,1

1

0

τ1,1

 
Figure 10.26. Alternating renewal process over time 
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The lifetimes τ1,n are given as 

1,0,1,1 −−=τ nnn TT ,  n = 1(1) ∞, (10.56) 

which does not include the time at the beginning of operation T0,0 = 0 as a 
renewal point. 

The repair durations can be calculated by: 

nnn TT ,1,0,0 −=τ ,  n = 1(1)∞. (10.57) 

A sequence of time T1,1, T0,1, T1,2, T0,2, T1,3, ... signifies an alternating re-
newal process if the given differences in Equations (10.56) and (10.57) are 
independent, positive, random variables. Furthermore, it is necessary that 
all lifetimes τ1,n and all repair durations τ0,n possess the same distribution. 
Since it is assumed that at the time t = 0 a new component enters opera-
tion, the distribution of the first lifetime τ1,1 is the same as the distribution 
of the following lifetimes τ1,n. In order to distinguish those alternating re-
newal processes which do not fulfil this requirement, such processes are 
given the name common alternating renewal processes [10.7,  10.45]. 

The behaviour of the lifetimes τ1,n is characterized by F(t), f(t) and 
MTTF and the behaviour of the repair durations τ0,n is given by G(t), g(t) 
and MTTR. The lifetime τ1,n comes to an end when it reaches the point of 
renewal T1,n, which is the reason why this point is also called the point of 
failure. The point of renewal T0,n, which ends the repair duration τ0,n, is 
also characterized as the point in time for the restart of operation. 

10.4.5.2 Renewal Equations 

Similar to the common renewal process, the renewal equations for em-
bedded processes are found to be integral equations after Laplace trans-
formations, geometrical series development, rewriting in the Laplace field 
and Laplace reverse transformation. The renewal equation for the renewal 
density of an embedded 1-renewal process composed of points of failure is 
given in the equation below: 

( )∫ ′′∗′−+=∗∗+=
t

ttgftthtftgfhtfth
0

111 d)()()())(()()(
.
 (10.58) 

The renewal equation for the renewal function is as follows:  

( ) ( )∫ ′′∗′−+=∗∗+=
t

ttgfttHtFtgfHtFtH
0

111 d)()()()()()( . (10.59) 
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In order to approximate the replacement part demand, it is practical to 
use the renewal function of failures H1(t), so that the required replacement 
components are available during the state of repair, which begins after a 
failure occurs. 

The renewal equation for the renewal density of an imbedded 0-renewal 
process is as follows: 

( ) ( )∫ ′′∗′−+∗=∗∗+∗=
t

ttgftthtgftgfhtgfth
0

000 d)()()()()()(  (10.60) 

The renewal equation for the renewal function is  

( ) ( )∫ ′′∗′−+∗=∗∗+∗=
t

ttgfttHtgFtgfHtgFtH
0

000 d)()()()()()( . (10.61) 

10.4.5.3 Estimation of Replacement Part Demand 

For both embedded renewal processes it is possible to specify renewal 
laws. These laws yield approximations for H1(t) and H0(t) for large values 
of time t. It is required that MTTF < ∞, MTTR < ∞, Var(τ1) < ∞ and 
Var(τ0) < ∞. 

It can be determined that the straight line below describes the asymptote 
of the curve H1(t) for an imbedded 1-renewal process [10.27] 
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 (10.62) 

The following straight line corresponds to the asymptote of the curve 
H0(t) for an imbedded 0-renewal process [10.27] 
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Thus, Equations (10.62) and (10.63) offer a closer approximation of the 
renewal functions H1(t) and H0(t) for large values of t as does the elemen-
tary renewal approach. At the same time, these equations offer the possi-
bility to estimate the replacement part demand for large values of t. Here, 
the approximation of the renewal function H1(t) should be used, since at 
the time of failure, the replacement part should already be ready at hand. 
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10.4.5.4 Point Availability 

Point availability receives an ever increasing interest in the practical 
field as a performance feature of a technical system. According to Equa-
tion (10.3), point availability describes the probability that a component is 
in a state of operation at the point in time t. Point availability can be de-
termined in various different ways based on alternating renewal processes.  
Three of these methods will be introduced and discussed in the following 
text. 

Method I: 
Point availability is seen as a special case of interval reliability [ 10.30] 

for x = 0: 

∫ ′′′−+=∗+=
t

tthttRtRthRtRtA
0

00 d)()()()()()( . (10.64) 

For the calculation of the point availability in Equation (10.64), it is re-
quired that the renewal density h0(t) is known. 

Method II:  
A second way to calculate the point availability A(t) of a component, 

without having to explicitly know the renewal density h0(t), is described in 
[10.7] and [10.36]. It is assumed that a component starts in an operational 
status (1-state) at t = 0. Only the time T0,n, where the renewed component is 
brought back to a state of operation, are taken into consideration. The first 
renewal after the end of the first repair duration is at the time t', Figure 
10.27. 

 

tt'=T0,10

Z(t)
1

0

time

t - t'

 
Figure 10.27. Progression of status for an alternating renewal process 

The distributed density of the time of the first reconnections T0,1 is equal 
to )(tgf ′∗ . Under the requirement that the first reconnection takes place 
at t' for tt ≤′ , the probability of the 1-state at t is equal to A(t − t'). 
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The integration over all possible t'’s yields:  

( )∫ ′′∗−′=≤′==
t

ttgfttAttTtZP
0

1,0 d)()()|1)(( . (10.65) 

Furthermore, it is necessary to consider the case that the first reconnec-
tion T0,1 takes place after the time t. For this case, the probability of the 1-
state at the time t is 

)()(1)|1)(( 1,0 tRtFttTtZP =−=>′== . (10.66) 

The recursion formula for point availability can be directly won out of 
the Equations (10.65) and (10.66), each with disjunctive conditions for the 
point in time T0,1, along with the law for total probability: 

( ) ( ) ttgfttAtRtgfAtRtA
t

′′∗′−+=∗∗+= ∫ d)()()()()()(
0

. (10.67) 

Method III: 
According to Equation (10.3), point availability is defined as the ex-

pected value of the condition indicator C(t) at the point in time t. The cal-
culation of the condition indicator is carried out with the help of the num-
ber functions N1(t) and N0(t). 

N1(t) signifies the number of occurred failures during the interval [0, t] 
and N0(t) signifies the number of finished repairs during the interval [0, t]. 
As can be seen in Figure 10.28, at the time t, the condition indicator C(t) is 

, (10.68) 

Through expected value formation, a further form of point availability is 
gained from the description of the condition indicator. Under consideration 
of the rules for sums of random variables along with the fact that the ex-
pected value of a constant value is constant, the following point availabil-
ity can be achieved [10.1]: 

( ) ( ) ( ) )()(1)()(1)()( 1010 tHtHtNEtNEtZEtA −+=−+== . (10.69) 

With a Laplace transformation it is possible to show that Equations 
(10.64), (10.67) and (10.69) represent equivalent expressions for the calcu-
lation of the point availability A(t) [ 10.30]. 

)()(1)( 10 tNtNt C −+=
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Figure 10.28. Relationship between the number function and condition function 

10.4.5.5 Asymptotic Behaviour 

The availability A(t) converges for long periods of time to a constant 
value independent of the initial condition at the time t = 0. The steady state 
availability can be determined with the help of the fundamental theorem of 
renewal theory. 

MTTRMTTF
MTTFtAA

tD +
==

∞→
)(lim . (10.70) 

By characterizing the time span between two neighboring renewal points 
as the renewal cycle, the steady state availability becomes equal to the 
expected value of the work time relative to the expected value of the cycle 
length. 
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10.4.5.6 Analysis of the Alternating Renewal Process 

The renewal Equations (10.58) to (10.61) are linear Volterra integral 
equations of the 2nd type. The solution achieved by the application of nu-
merical integration procedures is shown in [10.27] and [ 10.30]. The Equa-
tions (10.64), (10.67) and (10.69) for the calculation of point availability 
A(t) can also be calculated numerically. 

10.4.5.7 Example 

Figure 10.29 represents examples of renewal densities, renewal func-
tions, failure and repair densities as well as the availability for various 
Weibull failure distributions for identical Weibull repair distributions. The 
repair distribution is similar to a normal distribution with b = 3.5. The 
various failure distributions have been chosen in such a way that the MTTF 
value remains constant. The shape parameter of the failure distribution is 
varied 5 times, which also leads to various characteristic lifetimes T for a 
constant value MTTF. The parameters for the distributions used have been 
compiled in Table 10.7. 
Table 10.7. Parameters for failure and repair distributions 

 Failure Distribution F(t) Repair Distribution G(t) 

Nr. b MTTF [h] T [h] )(τVar  
[h] 

b MTTR [h] T [h] )(τVar  [h] 

1 1.0 1,000 1,000 1,000 3.5 600 666.85 189.87 
2 1.5 1,000 1,107.73 678.97 3.5 600 666.85 189.87 
3 2.0 1,000 1,128.38 522.72 3.5 600 666.85 189.87 
4 3.0 1,000 1,119.85 363.44 3.5 600 666.85 189.87 
5 4.0 1,000 1,103.26 280.54 3.5 600 666.85 189.87 

 
Figure 10.29 shows the convergence towards the stationary value for the 

renewal densities h∞ = 1/(MTTF + MTTR) = 1/1600 h−1 = 6,25 10−4 h−1.  
The renewal densities assume different forms dependent upon the shape 
parameter. The larger the shape parameter b is, the more strongly the re-
newal density oscillates around the stationary value h∞. 
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Figure 10.29. Renewal densities, renewal functions, failure density, repair density 
and availability for Weibull distributed failure and repair behaviours  

The lower the variance is for failure distribution, the faster the renewal 
density swings to the convergent value. 

The renewal functions show a corresponding behaviour. Here, it may be 
shown the convergence towards a linear asymptote according to Equations 
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(10.62) and (10.63), whereas the slope of the renewal functions converts 
towards 1/h∞. The fact that the renewal functions are shifted in the horizon-
tal direction can be accounted for by the different variances.   

The availability also assumes different forms in dependency upon the 
shape parameter. The larger the shape parameter b is, the more the avail-
ability oscillates around the steady state availability 
AD = MTTF / (MTTF + MTTR) = 10 / 16 = 62,5%. 

10.4.6 Semi-Markov Processes (SMP) 

For systems described by a renewal process, it is not necessary to limit 
the requirements to a certain distribution.  However, with these processes it 
is only possible to realize simply structured systems. With the common 
Markov process it is possible to describe complicated systems. It is re-
quired however, that the systems are described by exponential distribu-
tions. The Semi-Markov process (SMP) to a certain extent combines the 
positive characteristics of the renewal and the Markov processes. Lévy 
[10.31] and Smith [10.35] were the first to formulate this process in 1954 
(Bernet [10.4]). A summary of applications of the SMP as well as a deeper 
look into SMP theory with derivations and proofs can be found, for exam-
ple, in Cocozza-Thivent et al.[ 10.11,  10.12] Fahrmeir et al. and Gaede. 

10.4.6.1 Semi-Markov Process Procedure  

SMP is a stochastic process with m + 1 statuses (C0, ..., Cm), with the fol-
lowing characteristics:  if the status Ci is occupied at a certain point in time 
t, then the next status is determined by the Semi-Markov transition prob-
ability (SMT) Qj(t). This allows for the last start time t' to be incorporated 
into the calculations. An example of the condition indicator function c(t) 
under the Semi-Markov process is shown in Figure 10.30. 

The distribution function of the unconditional time spent in the various 
statuses Ci is won by summation: 

∑
=

=
m

j
iji tQtQ

0

)()( . (10.71) 
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Figure 10.30. Example of the condition indicator function under the Semi-Markov 
process 

The time spent in each status Ci including the transition to status Cj is a 
positive random variable with the distribution function Fij(t). The process, 
also called the Markov renewal process, is fully determined by Fij(t) and 
the given initial conditions. 

In contrast to the renewal processes, the semi-Markov process allows for 
the modeling of more than two statuses. Together with the maintenance of 
repairable systems it is not only possible to recreate the state of operation 
and the state or failure or repair, but also further statuses can be modeled, 
for example, “down time due to preventive maintenance” or “waiting for 
the arrival of replacements parts”. 

10.4.6.2 Probability Distribution and Availability 

In reliability theory, the status probability is mostly of interest  

))0(|)(()(, ijji ZZZtZPtP === , (10.72) 

which corresponds to the probability distribution at the point in time t in 
the status j, if the process in the status i is started at the point in time t = 0. 
This probability function is defined by a system of integral equations, 
which in many references are often referred to as Kolmogorov equations of 
a SMP: 

∑∫
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0 0
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with the Kronecker delta δij = 0 for j ≠ i, δii = 1 and the SMT density 

dt
tdQ

tq ij
ij

)(
)( = . (10.74) 

For the determination of the availability it is useful to set up two com-
plementary subsets out of the statuses for the process: ΓS is the subset for 
all statuses in which the observed unit is functional and ΓF is the subset for 
all statuses in which the observed unit has failed. Thus, the point availabil-
ity can be calculated as follows: 

∑
Γ∈

=
Sj

ji tPtA )()( , . (10.75) 

10.4.7 System Transport Theory 

Dubi developed the system transport theory during his attempts to find 
an all-inclusive theory of availability analysis [10.16 -  10.26]. This theory 
is based on an analogy to particle transport theory in matter. The following 
sections introduce this analogy and the fundamental idea of this theory for 
the description of system behaviour. 

10.4.7.1 Analogy to Physical Particle Transport Theory 

Dubi found a closely related mathematical analogy between the physical 
transportation of particles in a medium and the failure and repair behaviour 
of a system over time [10.16]. The analogy concludes that when a particle 
floats in three dimensional space, it collides with other particles and un-
dergoes a change in its status. This analogy has also been researched and 
published by Devooght [ 10.16], Labeau [10.27,  10.36] and Lewins [10.32, 
 10.49].   

Within a medium in space, a particle (neutron) moves along a straight 
line until it collides with an atomic nucleus. The location of the collision is 
described by the vector r. The vector Ω describes the direction in which 
the neutron enters the collision. Before the collision, the particle has the 
energy E. The particle enters the collision with the state space vector 
P = (r, Ω, E). A nuclear reaction takes place when the neutron collides 
with the atomic nucleus, in which the particle is absorbed or repelled. In 
the latter case, the particle leaves the collision at the same location r, how-
ever, with a new direction Ω' and a new energy E'. Thus, the particle exits 
the location of collision with the state space vector P' = (r, Ω', E'). After 
this event, the particle moves again along a straight line from r to r' where 
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the next collision occurs. Thus, the particle enters the next collision at the 
point in state space P' = (r', Ω', E'). This process continues until the parti-
cle is absorbed or until the particle leaves the limits of the matter. The 
process which controls the transportation from the event P to the next 
event P' is described by the neutron transport theory, which is shown 
schematically in Figure 10.31. 
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Figure 10.31. Neutron transportation process in matter 

This process can be divided into two parts. The first part is the collision 
itself and the second part is the free flight towards the next collision. The 
collision itself is described by the relationship between energy and direc-
tion before and after the collision. For this purpose, the collision kernel 

( )EErC ′Ω′→Ω ,,; is defined as the probability that a particle, which en-
ters a collision at the point r with the direction Ω and the energy E, leaves 
the collision with the direction Ω' and the energy E'. The kernel 

( )rrET ′→′Ω′ ;, describes the free flight of the particle as a probability 
density that the particle, after having left a collision at r with the direction 
Ω' and energy E', will enter the next collision at point r'. The product of 
the collision kernel and the free flight kernel results in the transportation 
kernel: 

( ) ( ) ( )r;rE,ΩTE,Ωr;Ω;ΩCPPK ′→′′′′→=′→ . (10.76) 

This is the probability density that a particle, which underwent a colli-
sion at the point P, will undergo its next collision at the point P'. Based on 
this, the collision density or event density ψ(P) is introduced, which stands 
for the number of collisions at the point P. The definition of the collision 
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density is given by the Boltzmann transport equation [10.16,  10.22], which 
is 

( ) ( ) ( ) ( )∫ ′′′′→′ψ+=ψ
P

PdE,Ω,rr,Ω,ΩKPPSP , (10.77) 

Here, S(P) is the so-called source term, which describes the first collision 
in the matter. The Boltzmann transport equation describes the relationships 
of the successive collisions and is the fundamental and only equation to be 
solved for the analysis of the behaviour of a particle in a medium. Analyti-
cal solutions for this equation only exist for very few and simple cases. 
Numerical solutions exist for one and two dimensional approximations. A 
complete solution, in all dimensions, is only possible with the help of the 
Monte-Carlo method. 

10.4.7.2 General Form of the System Transport Equation 

A situation in reliability theory is comparable to the situation described 
above in physical particle transport theory. Thus, it is possible to transpose 
methods from particle transport theory to reliability theory [10.16,  10.22]. 

A system is observed with n components. Each component is assigned a 
condition indicator bi and the respective entry time τi, i = 1(1)n. The condi-
tion indicator can assume as many different values as the component can 
assume statuses. For example, bi = {0,1,2} could stand for the statuses: 
failed, functional and in reserve. The value τi stands for the point in time in 
which the ith component enters status bi. 

All status indicators n are brought together to a system status vector B 
and system entry time vector τ, represented as: 

( )ni bbbbB ,...,,...,, 21=  and (10.78) 

( )ni ττττ=τ ,...,,...,, 21 . (10.79) 
Both vectors are now combined with the continuous successive system 

time t to the status space vector P: 

)( t,B,P τ= . (10.80) 

This vector expresses that at the time t, a system is in the status B, which 
was achieved at the times τi. All possible vectors P together result to the 
set {P}, which is characterised as the state space for the system. The sys-
tem now switches from one condition vector to the next, in an n dimen-
sional discrete space for statuses, in dependency upon the continuous 

t. system time 
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This procedure can be illustrated as follows: At the point in time 
t = t0 = 0, the system is in its initial status B = B0. At a certain point in time 
t1, a change in the system’s status occurs. This event causes a change in the 
condition indicator bi of a system component. The change can then further 
provoke the immediate change of status in other system components. The 
linking of these changes must be defined by logical connections in the 
system model. A unique condition vector B1 is assigned to the time t1. The 
system remains in status B1 until a new status change occurs at the time t2. 
This transportation process continues until the end of the observed period 
of time Tmax. Figure 10.32 shows an illustration of this transportation proc-
ess. In Dubis terminology, this constant switching between changes in the 
status and free flight phases is referred to as collision and free flight. Until 
the time Tmax is reached, p changes in status and p+2 free flight phases take 
place. 
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t=t1

B=Bp
t=tp

B=Bp-1
t=tp-1

B=B3
t=t3

B=B2
t=t2

 
Figure 10.32. Transportation of a system in state space 

This sequence of successive switching between changes in status and 
free flight phases can be summarized as a history of the system Ck. This 
history describes the random effects of the changes in status with the cor-
responding points in time of changes in status: 

( ) ( )),(),,(,),,(),,( 111111121 ppppppk tBtBtBtB,c,c,,ccC −−− == KK . (10.81) 

Since the time of the change in status as well as the change in status it-
self are stochastic values, the effect Ck is not an exact solution of the sys-
tem transport problem, but rather just a possible sequence. 

Dubi proposed the following equation for the collision density, the fun-
damental value for the calculation of the availability, in an equivalent form 
to the Boltzmann transport equation (Equation (10.77)) [10.20]: 

∑∫∫
′ ′τ

′′→′′′′′′ψ+δ=ψ
B t

ttBtBKtBtBPtB dτd),τ,,τ,(),τ,()()(),τ,( 0 . (10.82) 
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This transport equation represents the foundation for the calculation of 
the availability of systems relative to time. The availability A(t) can be 
found in [10.20] as  

ttRttA
S

t

S ′′′ψ= ∑ ∫
Γ∈

d),τ,B(),τ,B()(
B 0

. (10.83) 

Here, the expression RS(B, τ, t) is defined as the system state reliability 
and as the fictitious serial connection of the individual system components 
as a function of B and τ . A universal analytical assessment of this rela-
tionship has not yet been found and can only be evaluated for exceptions. 

10.4.7.3 Application and Analysis of the System Transport 
Theory 

The system transport theory allows for the modeling of complex systems 
possessing an arbitrary structure, arbitrary distribution function for the 
description of the failure and repair behaviours of the components and 
arbitrary interaction of the components within the system [10.18,  10.20, 
 10.24]. Many numerous maintenance strategies can be recreated and re-
placement part logistic can be taken into consideration. 

The only applicable method for the solution of the system transport 
equations is Monte-Carlo simulation [10.17,  10.21,  10.22,  10.30]. With 
this system, a “game” is played with the modeled system. In other words, a 
large number of various flows of events are generated in many numerous 
simulation runs. A flow of events describes the function of the status for a 
system and its components over time. Based on the flow of events it is 
possible to determine variables of the system, for example, availability or 
required replacement parts. 

10.4.8 Comparison of the Calculation Models 

In Table 10.8, the calculation models are summarized. 
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Table 10.8. Comparison of the models  
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For each model, the aspects which can be considered by the system de-

scription are noted. Furthermore, the types of distribution functions which 
can be used for the description of failure and repair behaviour are shown. 
Each model possesses a specific type of describing equations. The respec-
tive solution options for the analysis of each model are also given.  Lastly, 
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the system variables or component variables which can be calculated with 
each model are listed. 

10.5 Exercise Problems to Repairable Systems 

Here, our readers can find comprehension questions for the individual 
chapter sections. These questions serve as a measure for the testing and 
understanding of the material dealt with in this chapter. These comprehen-
sion questions are followed by several calculation problems. The focus of 
the calculation problems is Section 10.5. Additionally, examples in Sec-
tions 10.5.1.3, 10.5.2.1, 10.5.2.2, 10.5.3 and 10.5.5.7 can be found for the 
individual calculation models. 

10.5.1 Comprehension Questions 

Section 10.1 

1. How is maintenance defined? 
2. What is the goal of maintenance work? 
3. What are the 3 categories into which maintenance methods can be di-

vided? 
4. What is the general idea of preventive maintenance? 
5. Which methods can be carried out within the scope of preventive main-

tenance? 
6. Describe the term condition-based maintenance. 
7. Which procedures can be used for status monitoring? 
8. What is the general idea of corrective maintenance?  
9. How can the methods for corrective maintenance be characterized?  
10. What are the advantages of replacement part storage? 
11. Describe the storage function for one order cycle. 
12. How is the order limit chosen in replacement parts storage?  
13. What can be determined by a maintenance strategy? 

Section 10.2 

1. What components make up life cycle costs?  
2. Which lifetime phase has the greatest influence on the life cycle costs? 
3. Why does a minimum occur in life cycle costs for a certain availability? 

Section 10.3 

1. What is supply delay time? 
2. What is maintenance delay time? 
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3. When does the maintenance delay time reach zero? 
4. Why can’t supply delay time and maintenance delay time be influenced 

by design methods? 
5. How is maintainability defined? 
6. Which distribution functions are often used for the description of main-

tainability? 
7. What can be qualitatively described by maintainability? 
8. With the help of which design actions can the maintainability be im-

proved? 
9. What is the general definition of availability? 
10. What is the steady state availability AD of a system as a function of the 

average lifetime MTTF and the average down time M ? 
11. What types of steady state availabilities are there? 
12. Which type of steady state availability can be used as an assessment 

criterion for the design quality of a product? Explain your answer! 
13. Which periods of time make up the average down time M  when calcu-

lating the operational availability )(o
DA ?  Which of these periods of 

time can be influenced by the manufacturer and which can be influ-
enced by the operator? 

Section 10.4:  

1. The failure behaviour of an element is described by an exponential 
distribution.  Show why periodical renewal is not able to improve the 
reliability of this element.  

2. The failure distribution of an element is described by a Weibull distri-
bution.  For which shape parameters b is it possible to increase the av-
erage lifetime MTTFPM with periodical renewals?  

3. The failure behaviour of an element is described by a Weibull distribu-
tion.  The repair duration is estimated with an exponential distribution.  
Can the Markov process be used for the calculation of the availability 
A(t)?  

4. Why is the availability always A(t) = 100 % for the common renewal 
process of a component? 

5. Which time span is described by the alternating renewal process?  
6. Why is the approximation of the renewal function H1(t) preferably used 

for the determination of the replacement part demand?  
7. What is the fundamental variable of system transport theory for the 

calculation of the availability?  
8. Name the only applicable method for solving system transport equa-

tions. 
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10.5.2 Calculation Problems 

Problem 10.1: 
A component has a MTTF value of 5,000 h.  What is the maximal allowed 
MTTR value for the component, so that an availability of AD = 99 % is 
achieved? 

Problem 10.2: 
A serial system consists of three identical components.  The MTTF value 
of one component is 1,500 hours.  The system has a steady state availabil-
ity of 90 %.  What is the MTTR value of the component? 

Problem 10.3: 
A system consists of three identical components in parallel connection.  
The system has a steady state availability ADS of 99.9 %.  What is the 
steady state availability ADi of one component? 

Problem 10.4: 
A system consists of three identical components in parallel connection.  
The MTTF value of one component is 1,500 hours.  The system has a 
steady state availability of 99 %.  What is the MTTR value of the compo-
nent? 

Problem 10.5: 
A system consists of 3 components connected as shown in the reliability 
block diagram below.  The system should reach a steady state availability 
ADS of 95 %.  The steady state availabilities AD2 and AD3 of the components 
2 and 3 are both 90 %.  Component 1 has an average lifetime MTTF of 
1,000 hours. 

 

 
Figure 10.33. Diagram for Problem 10.5 

a) Calculate the required steady state availability AD1 for component 1 so 
that the system steady state availability is achieved.  

b) Which MTTR value must be reached for component 1 in order to reach 
the required steady state availability AD1 from a)? 

Problem 10.6: 
The size of the replacement part storage should be determined for a com-
ponent.  The lifetime τ1 of the component can be described by an exponen-
tial distribution with the failure rate λ = 0.002 1/h.  The repair duration τ0 is 
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likewise described by an exponential distribution with the repair rate 
µ = 0.1 1/h.  Note: Var(τ1) = 1 / λ2 and Var(τ0) = 1 / µ2.  The storage size is 
characterized with I (initial stock). 

a) Using the approximation equation )(ˆ
1 tH  from the alternating renewal 

process, give the general equation for the stock S(t).  
b) Determine the storage size I, so that the replacement part supply is 

guaranteed for an operation period of 8,760 hours, in other words, so 
that the stock S(t) does not reach zero before the operational period is 
over. 

 
Problem 10.7: 
The failure rate λ = 0.03 1/h and the repair rate µ = 0.2 1/h are known for a 
single component.  The single component enters operation for the first 
time at the point in time t = 0 h. 

a) Calculate the steady state availability AD for the single component. 
b) What availability A(t) does the single component have at the point in 

time t = 2.1 h? 

Problem 10.8: 
The failure rate λ = 0.01 1/h and the repair rate µ = 0.1 1/h are known for a 
single component. 

a) Calculate the steady state availability AD for the single component. 
b) At what point in time t* has the single component reached an availabil-

ity of A(t*) = 95 %? 
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11 Reliability Assurance Program  

11.1 Introduction 

The kernel of the excellence of engineering products in present day 
competitive engineering manufacture is their reliability, which has been 
expostulated throughout this book. The present chapter deals with a com-
prehensive study encapsulating the importance of optimizing reliability 
through analysis and design. It provides a comprehensive reliability assur-
ance programme which should prove efficacious to both designer and 
product developer. It is argued that reliability assurance will in the future 
be the touchstone of a product’s veracity and a reliability audit will be a 
requisite for a product’s sale transaction. 

The design of reliable products is conducted under marginal conditions 
which continually intensify (see Figure 11.3). Especially the large com-
plexity of products and short development times require a more frequent 
and expanded use of reliability measures taken by the product developer. 
Well-engineered design methods and procedures alone are thus no longer 
sufficient to achieve high product reliability. The increased requirements 
can only be met under the application of special analytical reliability 
methods (see Figure 11.6). Such actions should encompass the entire 
product life cycle in order to optimize comprehensively. The result is a 
comprehensive reliability assurance program [ 11.2]. 

Controlling reliability consists of process steps made up of a succession 
of events which can be applied in each individual phase of a product life 
cycle. An example of such a procedure is illustrated in Figure 11.1. 
 

B. Bertsche, Reliability in Automotive and Mechanical Engineering. VDI-Buch,  
doi: 10.1007/978-3-540-34282-3_11, © Springer-Verlag Berlin Heidelberg 2008 
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1. definition of the reliability target

2. analysis of the dimension of the 
    necessary reliability actions 

3. planning of the strategy and action to 
    achieve the reliability target

4. accomplishment of the selected 
    reliability actions

5. analysis of the results of the selected 
    reliability actions

6. assessment of the achieved relability 
    results for further improvements  

Figure 11.1. Systematical process steps for the control of reliability according to 
DIN EN 60300-1 [ 11.3] 

The integration of feedback loops in the various process steps allows for 
a continuous improvement of the product at critical points. 

A further example taken from the practical field should help to clarify in 
detail how the application and use of a reliability assurance program can 
be set up.  Here, reference should be made to the procedure conditions in 
addition to the description of the process steps, compare with Figure 11.2.  

These examples illustrate the already applied implementation of reliabil-
ity methods in the development process. In the future, the necessity for 
reliability assurance will continue to increase and most likely be valued as 
a prerequisite for a successful product.  
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production test

field data

 
Figure 11.2. Elements of a reliability program [ 11.1] 

In the following, the fundamentals of a reliability assurance program will 
be represented. 

11.2 Fundamentals of the Reliability Assurance Program 

11.2.1 Product Definition 

Each new development begins with a planning phase where the proce-
dure and clarification of a problem are established [ 11.5]. As the saying 
“You’ll never reach a goal you don’t have” implies, the first part of reli-
ability work consists in determining the planned reliability, see Figure 
11.3. Logically, this goal value set is taken from customer expectations or 
oriented on competition positions. Thus, for example, it is possible to de-
termine a measurement of either percentage increase of the previously 
achieved reliability or of lower failure quota in relation to the competitors.  
In some cases statutory requirements must be adopted. 
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1. determination of the costomers expectations on total reliability, 
    functionality, life cycle costs,... 
2. determinatin of previous values and competition data 
    (market position, ...)
3. definition of the total reliability target
4. split of the total reliability on the system and the components 
5. definition of the component and the system reliability in the 
    specifications 

product definition product
design production use

 
Figure 11.3. Reliability measurements during product definition 

In the next step, this reliability goal must be distributed among the sys-
tems and machine components of the product. Normally, this can be easily 
done with the help of Boolean theory. For the most common case of a se-
rial reliability structure and a low desired total failure quota, it is possible 
to estimate the total failure quota as the sum of all failure quotas for the 
systems and machine components. 

The acquired reliability characteristics should be entered into require-
ments or product specifications. Here, the completeness of all entries is 
important. To achieve the completeness of reliability data, the definition of 
the term reliability is given. Thus, all decisive function and surrounding 
conditions must first be described, see Figure 11.4. Since this content is 
often a part of other specification lists, a mere reference is sufficient. 

 
SPECIFICATIONS
for [component/system]
chapter reliability

1. functional and environmetal conditions
      (possibly q.v. chapter ...)

2. definition of the failures
      failure mode and resultant effects for the total system
3. reliability requirements
      maximum tolerable failure rate and/or B10-value etc.

4. reliability verification
      test bench run, verification procedure, test conditions and test period  

Figure 11.4. Requirement catalogue chapter: Reliability 
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The definition of failures is of importance since reliability characteris-
tics are assigned to each failure. Common values used in reality are the 
survival probability R(t), the failure rate λ(t), a Bx lifetime (B10 lifetime), a 
MTBF value (mean time between failures) or simply a failure quota 
(mostly a ppm value), see also Chapter 2. Sometimes it is possible that one 
reliability characteristic covers several failure types of a component. The 
exact choice of a value is based on the desired exactness and on branch-
specific circumstances. The specification catalogue is concluded by infor-
mation concerning reliability proofs to be carried out. This proof should 
document the achieved product reliability at certain points. This can nor-
mally be done with experimental testing and trials. 

11.2.2 Product Design 

Product design is the most important phase for a product developer. In 
this phase the product is planned, is designed and all details are worked 
out. Many various reliability measurements are taken; mostly dealing with 
special methods for the analysis and optimization of reliabilities, see 
Figure 11.5 and the previous chapter of this book. Reliability methods can 
be divided into quantitative and qualitative methods.   

 

1. reliability analysis
    predetermination of the reliability through quantitative calculation, 
    systematic investigation of the faults and failures through quantitative
    system studies

 

2. definition of test specifications, carry out the test planning 
3. carry out the reliability verification for the components, systems and 
    the whole product 

product
design production useproduct

definition

 
Figure 11.5. Reliability measurements taken during the product design phase 

Qualitative methods determine all possible faults and failures along with 
their consequences and effects with the help of planned and systematic 
procedures. 

In most cases, a qualitative ranking of weak points is gained. Figure 
11.6 offers an overview of the most common methods used. 
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The most well known qualitative method of today is FMEA (Failure 
Mode and Effects Analysis), which has obtained a wide application in the 
practical field.  

 
analytic methods to predict the reliability and 

afterwards opimization

qualitativquantitativ

 • system theory according to Boole
 • fault tree analysis (FTA)
 • Markov theory
 • Monte-Carlo simulation
 • renewal theory

 • FMEA (FMECA)
 • fault tree analysis (FTA)
 • result process analysis
 • check list
 • design review  

Figure 11.6. Overview of qualitative and quantitative reliability 

Quantitative methods directly produce probability values for the ex-
pected reliability with the help of calculation models. These methods are 
based on terms and procedures from statistics and probability theory. For 
quantitative methods it is first necessary to know the failure behaviour of 
system elements and their connections to one another, in order to be able 
to determine exact reliability characteristics. Here, it is important that the 
respective system theory is suitable for the corresponding situation, see 
Figure 11.7. 
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RSystem = f ( RSystemelement 1, RSystemelement 2, ... )

system modeling / system theory 

Boolean model:

Markov process:

Monte Carlo simulation:

renewal theory:

. . . . . . .

Exponential distribution:

Gausian distribution:

() ( ) ( ) ( )( )
( )
( )

( )
∏∑
=

−

=
−⋅⋅⎟

⎠
⎞⎜

⎝
⎛=

n

j

x
i

x
i

m

j

jj
ss

j
i

j
i RtRxtR

1

1

1
1ϕ

( ) ( ) ( )∑∑
==

⋅+⋅−=
n

j
jij

n

j
iij

i tPtP
dt

tdP

11
αα

 ( ) ( ) ( )∑ ∫
Γ∈

⋅−⋅=
sB

s dtBRBtA
1

0
,, τττψ

 ( ) ( ) ( ) ( )∫ ⋅−⋅+=
1

0
τττ dtfhtfth

 ( ) tetR λ−=

 

( )
( )

∫
∞

⋅

−
−

⋅⋅
⋅⋅

=
t

detR τ
πσ

σ

µτ
2

2

2
2

1

 

() ( )

( )

∫
∞

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
−

⋅⋅
−

⋅
⋅⋅

=
t

t

de
t

tR τ
τπσ

σ
µτ 2

0ln
2
1

0

1
2
1

Lognormal distribution:

failure behaviour system element/
component distribution

Weibull distribution:

( )

b

tT
tt

etR
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
−

−
= 0

0

. . . . . . .
 

Figure 11.7. Determination of quantitative system reliability  

Diverse mathematical descriptions exist for element distributions as well 
as for system models. These mathematical models have a wide range of 
application and are highly sophisticated, thanks to the careful research 
done in the area of mathematical-theoretical description. They make up the 
foundation of all system reliability calculations. However, certain en-
hancements and especially practical application should continue to be in-
vestigated. In mechanical engineering, the Weibull distribution and the 
Boolean model are used the most often [11.4]. 

These analyses describe the expected reliability behaviour of machine 
components as well as entire systems. Figure 11.8 shows an example for a 
bus transmission, see also Figure 11.9. The analysis results can be used to 
improve weak points in the reliability as well as to optimize costs for com-
ponents whose role in the reliability are uncritical.   

In the product design phase it is necessary, not only to carry out theo-
retical trials, but also to prove the reliability in the product specifications. 
For this, exact testing information must be obtained and corresponding 
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tests must be conducted. A reliability proof should include at least critical 
systems and components. 
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Figure 11.8. Failure behaviour of a transmission (Figure 11.9) and the system 
elements in the Weibull chart [ 11.2] 
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Figure 11.9. Scheme of a transmission for a mechanical power splitter transmis-
sion with hydraulic coupled hydro units (H1, H2) for continuously variable ratio. 
Drive torque Tmax = 900 Nm, ratio igmax = 14 [ 11.2] 
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11.2.3 Production and Operation 

The product life phases “production” and “operation” cannot be directly, 
but rather indirectly traced back to the designer. Figure 11.10 shows a 
summary of reliability actions in these phases. During production, the reli-
ability of the processes must be ensured and tested for assemblies and the 
final product in appropriate audits. Failures which occur during production 
and which are directly related to the design of the product are of special 
interest to the product developer, as they must lead to a revision of all the 
previously completed reliability work. 

Failures which occur during the operation phase, the field data, are 
equally important. These failures show the actual failure behaviour of a 
product. By analyzing these failures it is possible to compare them with the 
prognosis of achievable reliability which was done during the design stage. 
Thus, reliability calculations can be improved and reliability information 
can be derived for future products. 

In the operation phase, the final reliability proof takes place, since here 
the most failures can be observed. The ideal case is the achievement of the 
given target reliability. 
 

1. statistical process planning
 2. quality management 
3. reliability audit

product
design production useproduct

definition

1. determination of field data
 2. target-performence comparison of testing and field data
3. determination of characteristical component distribution parameters

product
design production useproduct

definition

4. determinatin of correlation between trial and field usage
5. final reliability verification  

Figure 11.10. Reliability measurements during production and operation 
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11.2.4 Further Actions in the Product Design Cycle 

Further supporting measurements can accompany those measurements 
focused on the product life cycle. The most important of these are: 
• Setup of a comprehensive reliability data system as a foundation for 

prognosis calculations and feedback systems; 
• Further education of employees on topics regarding reliability; 
• Information system for the management and employees about reliability 

work (newsletter, reports, summaries, …); 
• Further research of reliability methods and counselling during their ap-

plication; 
• Use of computers, which includes the introduction and use of analysis 

programs, CAD/CAE and product lifetime systems. 
 

For the most efficient results, these further methods should already be 
implemented in the product design cycle. Their proper use and establish-
ment in product design assures optimal reliability during the entire devel-
opment process. 

11.3 Conclusion 

Reliability belongs to the most important characteristics of the quality of 
a product or process. Reliability actions can already prove to be profitable 
and effective in stages of product innovation and design. Here, high per-
formance methods are available which can be directly applied in practical 
situations. A complete process observation covering all phases in the prod-
uct life cycle is required in order to fulfil the high and always increasing 
reliability demands. Thus, it is necessary to develop a reliability assurance 
program whose essential elements have been described. Here, for the 
product developer, the determination of the reliability targets, the exact 
definition of specifications for reliability variables and actions as well as 
the introduction of existing reliability analyses during the product design 
should be included. The introduction and improvement of quantitative 
methods should especially be supported. 
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Solutions 

Solution 2.1 
a) Classification 

First, it is advisable for evaluation to sort the failure times according to their 
value (LC = load cycle): 

Number of classes for the class division according to the approximation equa-
tion (2.3): 5420 .nnC ==≈ .  
Chosen: 5 classes for a better visualization of the distribution. 

Calculation of the class size: 
 

cycles load 00026
5

cycles load 59,000 - cycles load 000186120 ,,
n

tt

C
C ==

−
=∆ . 

Starting with the shortest failure time, the following classes can be set up: 
Class 1: 59,000 load cycles ... 85,000 load cycles, 
Class 2: 85,000 load cycles ... 111,000 load cycles, 
Class 3: 111,000 load cycles ... 137,000 load cycles, 
Class 4: 137,000 load cycles ... 163,000 load cycles, 
Class 5: 163,000 load cycles ... 189,000 load cycles. 

b) Density function 
Number of failures and the relative frequency according to Equation (2.2) in 
the individual classes: 
Class 1: 4 failures; hrel,1 = 4/20 = 20%, 
Class 2: 8 failures; hrel,2 = 8/20 = 40%, 
Class 3: 5 failures; hrel,3 = 5/20 = 25%, 
Class 4: 1 failure; hrel,4 = 1/20 =   5%, 
Class 5: 2 failures; hrel,5 = 2/20 = 10%. 

For the histogram of the failure frequencies and the empirical density func-
tion f*(t) see figure below. 

c) Failure Probability 
The histogram of the cumulative frequency and the empirical failure probabil-
ity F*(t) are calculated by the addition of the failure frequencies according to 
Equation (2.8): 
Class 1: cumulative frequency H1 = hrel,1 = 20% = 20%, 
Class 2: cumulative frequency H2 = H1 + hrel,2 = 20% + 40% = 60%, 
Class 3: cumulative frequency H3 = H2 + hrel,3 = 60% + 25% = 85%, 
Class 4: cumulative frequency H4 = H3 + hrel,4 = 85% +   5% = 90%, 
Class 5: cumulative frequency H5 = H4 + hrel,5 = 90% + 10% = 100%. 

t1=    59,000  LC , t2=    66,000 LC , t3=    69,000 LC, t4=    80,000 LC, 
t5=    87,000  LC, t6=    90,000  LC, t7=    97,000 LC, t8=    98,000 LC, 
t9=    99,000  LC, t10= 100,000  LC, t11= 107,000 LC, t12= 109,000 LC, 
t13= 117,000  LC, t14= 118,000  LC, t15= 125,000 LC, t16= 126,000 LC, 
t17= 132,000  LC, t18= 158,000  LC, t19= 177,000 LC, t20= 186,000 LC. 
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For the histogram of the cumulative frequency and the empirical failure prob-
ability F*(t) see figure below. 

d) Survival probability 
The simplest way to calculate the survival probability is with Equation (2.11) 
where the survival probability is the complement to the failure probability. 
Class 1: survival probability R1* =100% - H1 =100% -  20% = 80%,
Class 2: survival probability R2* =100% - H2 =100% -  60% = 40%,
Class 3: survival probability R3* =100% - H3 =100% -  85% = 15%,
Class 4: survival probability R4* =100% - H4 =100% -  90% = 10%,
Class 5: survival probability R5* =100% - H5 =100% - 100% = 0%.

For the histogram of the survival probability and the empirical survival prob-
ability R*(t) see figure below. 
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Figure Solution to Problem 2.1b Figure Solution to Problem 2.1c 
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Figure Solution to Problem 2.1d ´ Figure Solution to Problem 2.1e 
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e) Failure rate 
To determine the failure rate, the already calculated relative failure frequen-
cies and the survival probability can be used. The failure rate is the quotient of 
these two values according to Equation (2.12): 
Class 1: failure rate λ1 = hrel,1/ R*1 = 20% / 80% = 0.25, 
Class 2: failure rate λ 2 = hrel,2/ R*2 = 40% / 40% = 1.00, 
Class 3: failure rate λ 3 = hrel,3/ R*3 = 25% / 15% = 1.67, 
Class 4: failure rate λ 4 = hrel,4/ R*4 = 5% / 10% = 0.50, 
Class 5: failure rate λ 5 = hrel,5/ R*5 = 10% / 0% = ∞. 

For the histogram of the survival probability and the empirical survival prob-
ability λ*(t) see figure above. 

Solution 2.2 
a) Mean, median and mode (measures of central tendency) 

The empirical arithmetic mean according to Equation (2.14) is: 
 

cycles load 000110cycles load 10
20

1866659 321 ....
n

t...ttt n
m =⋅

+++
=

+++
= . 

The median can be most easily calculated with the empirical failure probabil-
ity F*(t) from the solution to Problem 2.1c as the intersection with the 50% 
line of the cumulate frequency.  Thus, the median for the trial shafts is  
 cycles load 00095.tmedian ≈ . 
The mode tmode is the failure time corresponding to the maximum of the den-
sity function and can thus be determined out of the solution to Problem 2.1a.  
The mode for the trial shafts is tmode = 98.000 load cycles. 

b) Variance and standard deviation (statistical variables) 
The empirical variance of the trial set is calculated with the Equation (2.15) 
to:  
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e empirical standard deviation is the square root of the variance:  

cycles load 200342 .ss == . 



www.manaraa.com

Solutions      417 

Solution 2.3 
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Figure Solution to Problem 2.3 

Solution 2.4 
Calculation using the conversion table: 
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Figure Solution to Problem 2.4 

Solution 2.5 
The Rayleight distribution corresponds to a two parametric (t0 = 0) Weibull distri-

bution with the shape parameter b = 2.0 and a characteristic lifetime of 
λ

=
1T .  

The calculation of the reliability variables is executed with the help of the conver-
sion table: 
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Figure Solution to Problem 2.5 

Solution 2.6 
a)  See graphic: normal distribution network  
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Figure Solution to Problem 2.6a 

Procedure for using the normal distribution network: 
1) Draw in µ: t = 5,850h; F =50% 
2) Draw in µ + σ: t = 5,850h + 715h = 6,565h; F = 84% 
3) Draw in µ - σ: t = 5,850h - 715h = 5,135h; F = 16% 
4) Connect the three points to make a line 

b)  Searched for:    )()(1)(1)( 1111 tRtFttPttP =−=≤−=>  

 Transformation: 88821
715h

5850h4500h1
1 .tx −=

−
=

−
=

σ
µ

 

 Value for F(t1) taken from the table:  
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 %..).().()t(F 303010969901888211888211 ≈=−=−=−= φφ  
 %.ˆ.)t(F)t(R 9996969901 11 ==−=  

c)   Searched for: )()( 22 tFttP =≤  

 Transformation:  48950
715

850520062
2 .,,tx =

−
=

−
=

σ
µ

 

 %.ˆ.).()t(F 86868790489502 ≈== φ  

d) 0h1355               h5656 t,t, u ==−==+ σµσµ  

Searched for: 
),(F),(F),t,(P)t(F)t(F)ttt(P uu 135556565656135500 −=≤≤=−=≤≤

Transformations:     
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e) Required condition: 901 33 .)t(F)tt(P
!
=−=< ; thus x3 is needed, then t3 

results from inverse transformation!  

Out of the table:  ! table!in theexist t doesn'                ? 103 .)x( =φ  
 With the help of this equation: 
 28128190101 33333 .x.x.)x(.)x()x( −=⇒=−⇒=−⇒=−−= φφφ  

Inverse transformation: h89344h8505h71528133 .,,.xt =+⋅−=+⋅= µσ  

Solution 2.7 
a) Note that for the LNV it is necessary that: 

)exp(t)exp(t . σµµ σµ ±== ±       and      50 .  
Thus: 

 %F,).exp()exp(t . 50    h;34324110510 ==== µ  
 %F;.)..exp()exp(t 84    45417680110 ==+=+=+ σµσµ  

 %F;)..exp()exp(t 16   1093880110 ==−=−=− σµσµ  
 Draw in the straight line (see graphic lognormal network) 

b)  Searched for: )()(1)(1)( 1111 tRtFttPttP =−=≥−=<  

Transformation: 1121
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110h000101
1 .

,
.),ln()tln(x −=

−
=

−
=

σ
µ
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%.ˆ..).()x()x( 351313350866501112111 11 ==−=−=−−= φφφ ,  
thus %.)t(F)t(R 55861 11 =−=  
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Figure Solution to Problem 2.7a 

c)  Searched for:  )()( 22 tFttP =≥  

Transformation:  45380
80

110350002
2 .

.
.)ln()tln(x =

−
=

−
=

σ
µ

 

%.ˆ.).()x( 366767360453802 === φφ , thus %.)t(F 36672 =  

d) Searched for: 
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%.ˆ...)t(F)t(F)ttt(P 01545401013350673601221 ==−=−=≤≤  

e) Required condition: 1,0)(9,0)(1)( 3

!

33 =⇒=−= tFtFtP . 

Thus, is x3 needed, then t3 results from inverse transformation.  
Out of the table 103 .)x( =φ ?  
Does not exist in the table but it is known that 101 33 .)x()x( =−−= φφ   

and thus 28128190 333 .x.x.)x(
!

−=⇒=−⇒=−φ  

Inverse transformation:  
h9274288028111033 .,)...exp()xexp(t =⋅−=⋅+= σµ  

Solution 2.8 
a)  Searched for:  

%.ˆ.)exp()texp()t(R)t(F)tt(P 036767030
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b)  Searched for:  
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e) Required condition: 90505050 .)exp()(R)t(P
!
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Solution 2.9 

Hint:  Conversion for the expectancy:   ∫ ∫→⋅ Rft  

∫ ∫

∫ ∫
∞ ∞

∞ ∞

⋅⋅−=⋅⋅=⇒
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0 0

0 0
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Use integration by parts: ∫∫ ⋅′⋅−⋅=⋅⋅′
b

a

b
a

b
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dxvuvudxvu   

This results to: [ ] ∫∫
∞∞

→

∞ ⋅=⋅+⋅−=
000

0 )()()()( dttRdttRtRttE
43421

 q.e.d 

(Derivation just for information – not necessary for the solution of this problem) 

Expectancy (mean): ∫∫
∞∞

⋅=⋅⋅=
00

)()()( dttRdttfttE    

Three parametric Weibull distribution: 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

⋅
−

=
− bb

tT
tt

tT
tt

tT
btf

0

0
1

0

0

0
exp)(    

Inserted results to: dt
tT
tt

tT
tt

tT
bttE

bb

⋅
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

⋅
−
⋅

= ∫
∞ −

0 0

0
1

0

0

0
exp)(  

Substitution:  
)tT(tddtt)tT(tt

tTdt
td

tT
ttt

000

00

0

   and    

1   and   

−⋅′=+−⋅′=⇒
−

=
′

−
−

=′
  

Insert: ( )∫
∞

− ′⋅−⋅′−⋅′⋅
−

⋅+⋅−⋅′
=

0
0

1

0

00 )())(exp(
)(

)( tdtTtt
tT

btbtTt
tE bb  

Substitution again: 1     and   −′⋅=
′

′= bb )t(b
td

dx)t(x  
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1

1
    and   −′⋅

=′=′⇒ b
b

)t(b
dxtdxt  

Thus: ( ) ( )∫
∞

−
−

′
⋅−⋅′⋅⎟

⎠
⎞

⎜
⎝
⎛ ⋅+⋅−⋅=

0
1

1
00

1

)(
exp)()(

b
bb

tb
dxxtbtbtTxtE  

After simplification:  

∫ ∫
∞ ∞

⋅−⋅+⋅−⋅−⋅=
0 0

00
1

0

)exp()exp()()(

44 344 21
t

b dxxtdxxtTxtE  

Compared with the gamma function   ∫
∞

− ⋅⋅−=Γ
0

1)exp()( dzyyz z  (tabulated) 

Here it is necessary: 1
b
1z    11   and   +=⇒== z-

b
yx  

Thus, the expectancy is:   ( ) 00
11)( t
b

tTtE +⎟
⎠
⎞

⎜
⎝
⎛ +Γ⋅−=  

Similar:   ( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +Γ−⎟

⎠
⎞

⎜
⎝
⎛ +Γ⋅−=

bb
tTtVAR 1121)( 22

0   is called variance 

a) 0   ;h 0001    ; 01 0 === t,T.b  

{
h00011h0001

1
11h0001

2

,,,)t(EMTBF =⋅=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+Γ⋅==   

(Compared with the exponential distribution: TtE =
λ

=
1)( ) 

b) 0    ;h 0001    ; 80 0 === t,T.b  

( ) ( )

133.00h19064024770251h0001         

251251h0001252h0001
80

11h0001

,..,

..,,,
,

,)t(E

=⋅⋅=

=Γ⋅⋅=Γ⋅=⎟
⎠
⎞

⎜
⎝
⎛ +Γ⋅=

 

c) h100   ;h 0001   ; 24 0 === t,T.b  

  917.67h1000.908521h9001002381h900

100
24

11h)100h0001

241

=+⋅=+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
Γ⋅=

+⎟
⎠
⎞

⎜
⎝
⎛ +Γ⋅−==

321
.

.

.
,()t(EMTBF
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d) h200   t;h 0001   ; 750 0 === ,T.b  

( ) ( )
   h541150h200893370331h800

200h331331h800h200332h800

200
750
11h200h0001

...
...

.
),()t(EMTBF

=+⋅⋅=

+Γ⋅⋅=+Γ⋅=

+⎟
⎠
⎞

⎜
⎝
⎛ +Γ⋅−==

 

Solution 2.10 
a)

 

250
101
5012501

000 000 6

101
11 1.11

50

10

.
).ln(
).ln().(f

).ln(
)yln()f(

B
B

%y

tBbtB

y

+
−
−

⋅−
=

+
−
−

⋅−
=

=

 
      LW  ,265.5 ,3811=   

b) LW 316.4.265.5  ,381,1fBt tB ,345250100 =⋅=⋅=  

 50 50 .)B(FAus =  

 
LW 212,3108

50
431634500000064316 345

501 111
050

0

,
.ln

.,,,.
).ln(

tBtT
.b

=

−
−

+=
−−
−

+=⇒
  

c) )()()( 1221 tFtFtttP −=≤≤

%.ˆ...

..

,

,

,

,
expexp

85050808376032890

111111

345,316.4-212,3108

345,316.4-000,0002

345,316.4-212,3108

345,316.4-000,0009
11

==+−=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛= −− +−−

 

d) ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−===>
b

!

tT
ttexp.)t(R)tt(P

0

0
33 990  

b

tT
tt).ln( ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−=⇒
0

03990
0

03990
tT
tt).ln(b

−
−

=−⇒  
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LW 470,046.6
316.43459990345,316.4)-212,3108

990
111

003

=

+−⋅=

+−⋅−=⇒

,).ln(,(

t).ln()tT(t
.

b

 

e)  50000,000)5000,0005 ,,(R)t,(P
!
==>  

( )( ) ( )( ) 6980

345,316.4-8,212,310
345,316.4-,000,0005

50

   

0

0

0

0

0

0

0

0

.
ln

.lnln 

tT
ttln

)t(Rln-lnb

tT
ttlnb))R(tln(ln(

tT
tt))t(Rln(

tT
ttexp)t(R

b

b

=
⎟
⎠

⎞
⎜
⎝

⎛
−

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=⇒

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

⋅=−⇒⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−=⇒

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−=

 

Solution 2.11 

Required condition for the mode: 0    
!

dt
)t~(df:t~ =  

( )

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

−⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

−⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

⋅
−

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

⋅
−

=

−−

−−′⋅+⋅′=⋅

−

=
′

)()(1

)()(

exp)(

1

0

0
2

0

0

00

1

0

0
1

0

0

0

0

0
1

0

0

0

tf
tT
tt

tR
tT
tt

tT
b

tT
b

tf
tT
tt

tR
tT
tt

dt
d

tT
b

tT
tt

tT
tt

tT
b

dt
d

dt
tdf

bb

bbbababa

bb

 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

⋅
−

−⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

⋅
−

−⋅
=

−−

0

0
22

0

0
2

0

2

0

0
2

0

0
2

0

exp
)(

exp
)(
)1(

tT
tt

tT
tt

tT
b

tT
tt

tT
tt

tT
bb

bbb
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( )( )
( )

( ) x~lnbb
b

bln

x~ln)b(x~ln)b(
b

bln

b
b

b
x~bx~b

x~bx~b
)tT(

be

tT
tt~x~

dt
)t~(df

bb

bbx
!

!

⋅+−−=⎟
⎠
⎞

⎜
⎝
⎛ −

⋅−=⋅−+⎟
⎠
⎞

⎜
⎝
⎛ −

>⇒>
−

⋅=⋅−⇒

⋅−⋅−⋅
−

⋅=

−
−

==

−−

−−−

2221

2221

)!!exist! mode  thedoes (only then 101  :condition required

     1

10

 :substution         0   :now

222

222
2

0

0

0

 

( ) !  1      1)(~

1~

1ln1~ln

0

1

0

1

>+⎟
⎠
⎞

⎜
⎝
⎛ −
⋅−=

⎟
⎠
⎞

⎜
⎝
⎛ −

=

⎟
⎠
⎞

⎜
⎝
⎛ −

⋅=

bt
b

btTt

b
bx

b
b

b
x

b

b
 

Example calculation for a Weibull distribution with: 

h64818500
81
805001000

h500  ;h 1000   ; 81

81
1

0

.
.
.)(t~

tT.b

.
=+⎟

⎠
⎞

⎜
⎝
⎛⋅−=

===

 

00160970
500

64318
500

64318
500

8164818

0015990
500
350

500
350

500
81850

00160570
500
300

500
300

500
81800

850    800  :condition possibleA 
:n)calculatio(with  Control

8180

8180

8180

..exp..).(f

.exp.)(f

.exp.)(f

)t~(f)(f)t~(f)(f

..

..

..

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−⋅⎟

⎠
⎞

⎜
⎝
⎛⋅=

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−⋅⎟

⎠
⎞

⎜
⎝
⎛⋅=

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−⋅⎟

⎠
⎞

⎜
⎝
⎛⋅=

<∧<
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Figure Solution to Problem 2.11 

Solution 2.12 
Given is:  t1 , x1 , t2 , x2 

Required conditions: ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=∧⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

bb

T
t

x
T
t

x 2
2

1
1 exp1      exp1  

Reform: 

( )( )

( )( ) ( )( )

( )( )i

i
i

b
i

i

x
Tt
x

Tt
xbb

T
tbx

T
tx

−−=Λ
−
−−

=
−
−−

=⇒

⎟
⎠
⎞

⎜
⎝
⎛⋅=−−⇒⎟

⎠
⎞

⎜
⎝
⎛−=−

1lnln   :onSubstituti

(*)     
)ln()ln(

1lnln
)ln()ln(

1lnln for  Solve

ln1lnln           )1ln(

2

2
!

1

1

i
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( )

( )( ) ( ) ( )( )( ) ( )
( )( ) ( )( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−−−−

⋅−−−⋅−−
=⇒

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

ΛΛ
Λ⋅Λ

Λ⋅Λ⋅⋅Λ−⋅Λ

=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

ΛΛ

Λ⋅Λ⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Λ

−
Λ

=⇒

Λ
−

Λ
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Λ

−
Λ

⋅

Λ
−

=
Λ
−

21

1221

1212

12

21

1ln1lnln
ln1lnlnln1lnlnexp

)ln()ln(

exp

)ln()ln(

exp

)ln()ln(11)ln(

)ln()ln()ln()ln(

xx
txtxT

tttt

T

ttT

TtTt

21

21

2121

21

12
12

1222

21

--

 

ln(T) and in (*) 
( )( )

( ) ( )( ) ( ) ( )( ) ( )
( )( ) ( )( )21

1221
1

1

1lnln1lnln
ln1lnlnln1lnlnln

1lnln

xx
txtxt

xb

−−−−−
⋅−−−⋅−−

−

−−
=  

Solution 2.13 
a)    3 ES RRR ⋅=  

( ) ( )
( ) ( )( )213

21

111
111

RRRR
RRR

S

E

−⋅−−⋅=⇒
−⋅−−=

 

b) ( ) ( )   111 211 RRRp −⋅−−=  

( ) ( )

( ) ( )( ) ( ) ( )( )4321

21

432

111111

111

RRRRR

RRR

RRR

S

ppS

p

−⋅−−⋅−⋅−−=⇒

⋅=⇒

−⋅−−=

 

c) ( ) ( )      111 3RRR ES −⋅−−=  

( ) ( )321

21

111 RRRR
RRR

S

E

−⋅⋅−−=⇒
⋅=

 

d) ( ) ( ) ( )     1111 432 RRRRE −⋅−⋅−−=  
( ) ( ) ( )( )4325151 1111 RRRRRRRRR ES −⋅−⋅−−⋅⋅=⋅⋅=  

e) ( ) ( )     111 31 EES RRR −⋅−−=  
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( ) ( )432

523

211

111
    

      

RRR
RRR

RRR

E

EE

E

−⋅−−=
⋅=

⋅=
 

( ) ( ) ( )( )( )43521 111111
  :onSubstituti

RRRRRR
  

S −⋅−−⋅−⋅⋅−−=  

Solution 2.14 
The following equations are valid for a serial connection (n = number of compo-
nents) 

( )( ) ( )( )∏∏

∏

==

=

−−=⇒−=−⇒

=−==

n

i
iS

n

i
iS

ii

n

i
iS

tF)t(FtF)t(F

)t(R)t(F)t(R)t(R

11

SS
1

11   11

(t)R-1(t)F     and      1      

 

( )( ) ( ) ( )

( )( ) ( )( )

( )( )( ) ( )( )( )tRlntRln

tRlntRlnblogalog)balog(

tR
dt
d

dt
tdR

dt
tRd

dt
)t(dF)t(f

?)t(f

i

n

i
S

n

i
iS

n

i
i

SSS
S

S

∑

∑

∏

=

=

=

=⇒

=⇒+=⋅

→

→⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=−=

−
==

=

1

1

1

dt
d

dt
d

  :sum a becomesproduct  a then ze,logarithmiatedifferenti

 toDifficult 1

Density  

Using logarithmic differentiation: 

( )( )( ) ( )
( )

( )
( )

( )
( )

( ) ( ) ( ) ( )∑

∑

=

=

=

⋅−⋅=−⇒

⋅=⋅⇒

⋅==

n

i i
iSS

n

i i

i

S

S

)t(i

tR
tftRtf

tRdt
tdR

tRdt
tdR

tfdt
tdftfln

dt
d:)  (f 

1

1

1

11

1functiongeneralIn 

43421
λ

 

System failure density for a series connection:  

∑
=

λ⋅=
n

i
iSS ttRtf

1

)()()(  

System failure rate for a series connection: 
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( ) ∑
=

λ==λ
n

i
i

S

S
S t

tR
tf

t
1

)(
)(
)(

 

(= sum of the failure rates for the system components) 

Solution 2.15 
a)  Successively summarize the system structure:  

xo

xu

xE

X21 X31 X41 X51 X61

X22 X32 X42 X52 X62

X1

 
Figure Solution 2.15a 

∏

∏

=

=

=⋅⋅⋅⋅=

=⋅⋅⋅⋅=

6

2
26252423222

6

2
16151413121     ;

i
iu

i
io

RRRRRRR

RRRRRRR

)1)·(1(

111)1()1(1

6252423222615141312111

1

6

2
2

6

2
1

RRRRRRRRRRRR

RRR

RRRRR

ES

i
i

i
iuoE

⋅⋅⋅⋅−⋅⋅⋅⋅−⋅−=

⋅=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⋅⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−=−⋅−−= ∏∏

==

 

b) All components with an exponential distribution, use the power rule:  
( ) ( ) ( )∏ ∑∏ ⋅λ−=⋅λ−=⋅λ−= ttRtR iiiii expexp       exp  

( ) ( ) ( )

( )
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⋅
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⋅⋅λ−−⋅λ−=

⋅

λ

λ+λ+λ+λ+λ−−

⋅

λ

λ+λ+λ+λ+λ−−

t

tttRS

44444 344444 21

44444 344444 21

*
6252423222exp1  

*
6151413121exp1

      

expexp 11
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( )

( ) ( ) ( )( ) ( )( )
( ) ( )( ) ⎟

⎠
⎞⎜

⎝
⎛ ⋅−−−⋅⋅−=

⋅−−⋅⋅−−⋅⋅−−⋅λ−=

⋅=⋅⋅++++= −−

2
1

11

33

λexp11λexp

λexp1λexp1λexpexp
a
11014

a
11030512057λ

tt

ttttR

...

*

**
S

*

 
( ) ( ) ( )( )

%.ˆ.

RS

4949440

a101014exp11a10104exp10a
233

==

⎟
⎠
⎞⎜

⎝
⎛ ⋅⋅−−−⋅⋅⋅−= −−

 

%.ˆ.a)(Ra)(FS 5650556010110 ==−=   
5 ABS systems have failed out of 100. 

c) ( ) ( ) ( )( )2*
11 exp1expexp tttRS ⋅λ−−⋅⋅λ−−⋅λ−=  

( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( )( )tttt

tttt
⋅λ+λ⋅−−⋅λ+λ−⋅+⋅λ−−⋅λ−=

⋅⋅λ−+⋅λ−⋅−⋅⋅λ−−⋅λ−=

1
*

1
*

11

**
11

2expexp2expexp     
2expexp21expexp     

( ) ( )( )( )( )

( ) a.aa

dttexptexpdt)t(RMTBF

****

**
S

8679
10428

1
1018

2
2

12
2

12           

22

33

1111

0 0
11

=
⋅+

⋅
−

⋅
⋅

=

+⋅
−

+
=⎥

⎦

⎤
⎢
⎣

⎡

+⋅
+

+
−

−=

⋅+⋅−−⋅+−⋅=⋅=

−−

∞ ∞

∫ ∫

λλλλλλλλ

λλλλ

 

d) Iterative calculation  Newton procedure:  
( )
( ) 101   here         Bˆx:
xf
xfxx

i

i
ii =

′
−=+  

( ) ( )( ) ( )( )
( )( ) ( )( )

( ) ( )( ) ( ) ( )( )
( )( ) ( )( )

( ) ( )( ) ( ) ( )( )i**i**

i*i*
ii

****

**

**
S

BB
BB.BB 

BB)B('f

BB.)B(f

BB.BF

:

 :

10111011

101101
10

1
10

1011101110

101101

!

10

10110110

λλ2expλλ2λλexpλλ2
λλ2expλλexp290

  λλ2expλλ2λλexpλλ2     

λλ2expλλexp2900  

λλ2expλλexp2110

thus

Condition

⋅+⋅−⋅+⋅−⋅+−⋅+⋅
⋅+⋅−+⋅+−⋅−

−=

⋅+⋅−⋅+⋅−⋅+−⋅+⋅=

⋅+⋅−+⋅+−⋅−==⇒

⋅+⋅−+⋅+−⋅−==

+

Start value: R(10a) = 94.4%  F(10a) = 5.56% < 10%  
 Choose a120

10 =B  

e) The following statement is valid in general for the survival probability that a 
system remains intact until the point in time t under consideration that the 
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t1 (previous knowledge) (condi-
tional probability): 

( ) ( )
( )

( )
( ) ( )( )   ,a01

a10a10a10 1
11

1       tRR
tR

R
ttP

tPtttP SS
S

S ==
>
>

=>>  

For components as well as a system, here 

( ) ( )
( ) %.ˆ.

.

.a)(5Ra10R

.expexpa)5t(R

.a)(10R

SS

S

S

829696820
9750
9440

97572051032510182

9440
33

1

===

=⋅⋅−−⋅⋅−⋅==

=
−−  

 
Solution 2.16 
a)  First the system equation: 

( ) ( ) ( )

( ) ( )

4321431

42143243421

212121

4324342412

23322323321

     
111

11111

RRRRRRR
RRRRRRRRRRR

RRRRRRR
RRRRRRRRRR

RRRRRRRRRRR

EEES

EE

E

⋅⋅⋅+⋅⋅−
⋅⋅−⋅⋅−⋅+⋅+=

⋅−+=−⋅−−=
⋅⋅−⋅+⋅=⋅=

⋅−+=⋅+−−−=−⋅−−=

 

( ) ( )( ) ( )( )
( )( ) ( )( )
( )( ) ( )( )texptexp

texptexp
texptexptexpRS

⋅+++−+⋅++−−
⋅++−⋅++−−

⋅+−+⋅+−+⋅−=

4321431

421432

43421

-

:lawpower theuse ons,distributiapply 

λλλλλλλ
λλλλλλ

λλλλλ
 

( ) ( ) ( )

( ) ( )
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
⋅+++−+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
⋅++−⋅−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
⋅++−−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
⋅+−⋅+⋅−=

=

texptexp

texptexptexpR

  λλ ,

ed

cb

S

32

444 3444 214434421

443442143421

λλ

λλ

λλλλλλλ

λλλλλλ

4321421

432421

2        

2

:rates failurepart t replacemen and useSummarize

 

system has already survived the point in time 
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( )
( )
( )
( ) ....

,...

..

,..

.

e

d

c

b

a

1313

1313

1313

1313

13
1

h10813h1063822

h1089h1063422

     ,h10611h106344

h1067h10634

                                        ,h1022

−−−−

−−−−

−−−−

−−−−

−−

⋅=⋅++=

⋅=⋅++=

⋅=⋅++=

⋅=⋅+=

⋅==

λ

λ

λ

λ

λλ

 

Thus 
( ) ( ) ( )

( ) ( )tt
ttttR

ed

cbaS
⋅λ−+⋅λ−⋅−

⋅λ−−⋅λ−⋅−⋅λ−=
expexp2

expexp2exp)(  

Desired: 

( ) ( ) ( ) ( ) ( )
%.ˆ.

.exp.exp.exp.expexp

ht(Rht(P S

539292530
3819801611760210.22- 

)100)100

==
−+−−−−⋅−⋅+⋅=

==>

 

b) 07460100-1)100 .h)(Rh(F SS == ;
Systems 18661807460250 ⇒=⋅=⋅= ..)t(FNn sf  

c) dttRS∫
∞

=
0

S )(MTBF  

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )

( ) ( )

edcbaedcba

d
e

d
d

c
c

b
b

a
a

ddcba

tt

ttt

dtttttt

λ
+

λ
−

λ
−

λ
+

λ
=⎥

⎦

⎤
⎢
⎣

⎡
λ

−
λ

+
λ

+
λ

−
λ

−−=

⎥⎦
⎤⋅λ−

λ
−⋅λ−⋅

λ
+

⋅λ−⋅
λ

+⋅λ−⋅
λ

−⋅λ−⋅
λ

−⎢⎣
⎡=

⋅λ−+⋅λ−⋅−⋅λ−−⋅λ−⋅+⋅λ−=

∞

∞

∫

12121121210

exp1exp2

exp1exp2exp1

expexp2expexp2exp

0

0

500h8499
813

1
89

2
611

1
67

2
22

110MTBF 3 ≈=⎥⎦
⎤

⎢⎣
⎡ +−−+⋅= h.h

,,,,,
 

d) 1010   :Condition 101010 .)B(F)B(f.)B(F S

!

S −=⇒=  
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( )tt            

ttt         

Bf
dt

tdFtf

ttttt         
tRtF

eedd

ccbbaa

S
S

edcba

SS

⋅λ−⋅λ+⋅λ−⋅λ⋅−
⋅λ−⋅λ−⋅λ−⋅λ⋅+⋅λ−⋅λ+=

′==

⋅λ−−⋅λ−⋅+⋅λ−+⋅λ−⋅−⋅λ−−=

−=

expexp2
expexp2exp0

)(ˆ)()(

expexp2expexp2exp1
)(1)(

10

 

Iterative  Newton Procedure:  
( )
( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )i

e
i

d
i

c
i

b
i

a

i
e

i
d

i
c

i
b

i
a

B
e

B
d

B
c

B
b

B
a

BBBBB
i

i

i
ii

eeeee
eeeee.B

Bf
BfBB

1010101010

1010101010

22
2290

10

10

10
10

1
10

⋅−⋅−⋅−⋅−⋅−
⋅

⋅−⋅−⋅−⋅−⋅−

+

⋅+⋅⋅−⋅−⋅⋅+

−⋅++⋅−−
−=

=
′

−=

λλλλλ

λλλλλ

λλλλλ

 

( ) ( ) h105 estart valu8h100920100   :eStart valu 0
10 =⇒=⇒= B%F.hR

 

Solution 2.17 

[ ] (*) )t(R)t(R)t(R n
i

!n

i
iS                         :Series

1

==∏
=

 

 
 
Insert and solve for T. 
 

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
−

−=

=
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
−

−=

=−=−=

b
Sn

S

nb
S

SSS

tT
tB

exp.

))t(R(
tT

tB
exp.

..)B(F)B(R

0

010

0

010

1010

90

90

:System
901011

 

a i’s are the same
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( )

( )

( )

( )b n

tB
S

tB

tB

tB
S

b n

tB
Sb n

b
Sn

.ln

f
B
B

f
B
T

f
B
T

f
B
B

.ln

.
B
t

f 
B/)tT(

B/)tB(
.ln

tT
tB

.ln

90

90

850 withnow90

90

10

10

10

10

10

10

10

0

100

10010

0

010

−

−
=−

−

−
=−

==
−
−

=−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
−

+=−

 

( ) (**)           f
.ln

f
B
B

BT tB
b n

tB
S

       
90

10

10

10

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
−

−
⋅=  

Now ?10 =B     (gear wheel) 

)B(F).)B(Rx
..)B(R)B(R

)B(R)B(R

siSi

nn
SSSi

n
SiSS

1010

1010

1010

011638501
98836090

:(*) ofOut 

==−=⇒

===⇒

=

 

10%

X

B10S=BX
t

F

Fi

FS

point in time B10  
Figure Solution 2.17 
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Gear wheel: 

( ) ( )
( )

( )
( )

( )

LW 050.91 95Bft
LW 613.09 153T

.
.ln

.
T

(**) 

 .
.

.ln
.ln.f

.ln
xlnf

)!B(BB

tB

,tBbtB

S

!

x

=⋅=

=⇒

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

+
−

−
⋅=

=
+⋅

=
+

−
⋅−

=
=

100

1,8 9

81

10
10

850
90

850
824.6 111
000 100

824.6 111

in

LW6824 111
850

90
988360150

000 100

90
11

 

Solution 5.1 

))1(1()1(1
)()(

4

4321

4321

43421
F

RRRRR
xxxxy

S −−⋅−−=→
∧∨∧=

 

 

Negate and apply the law from de Morgan: 

)()(
)()(
)()(

4321

4321

4321

xxxxy
xxxxy
xxxxy

∨∧∨=

∧∧∧=

∧∨∧=

 

 
Fault tree: 

x3

x4

x2

x1

y

 
Figure Solution 5.1 
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Solution 5.2 
a)  

 

y y

x3 x2 x1 x3 x2 x1

failure tree function tree

   
Figure Solution 5.2a 

( )213 xxxy ∧∨=  
( ) ( )213 111 FFFFS ⋅−⋅−−=  

( ) ( )( )213 1111 RRRFS −⋅−−⋅−=  
b)  

 
x3 x4

y

x3 x4

y

x1 x2 x1 x2

failure tree function tree

 
Figure Solution 5.2b 

( ) ( )4321 xxxxy ∧∨∧=  
( ) ( )4321 111 FFFFFS ⋅−⋅⋅−−=  

( ) ( )( ) ( ) ( )( )4321 1111111 RRRRFS −⋅−−⋅−⋅−−−=  
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c) 

 

failure tree function tree

x3 x2 x1

y

x3 x2 x1

y

 
Figure Solution 5.2c 

( )213 xxxy ∨∧=  
( ) ( )( )213 111 FFFFS −⋅−−⋅=  

( ) ( )213 11 RRRFS ⋅−⋅−=  

d)  

x3 x4

y

x1 x2 x5
x3 x4

y

x1 x2 x5

failure tree function tree

 

Figure Solution 5.2d 

( ) 54321 xxxxxy ∨∧∧∨=  
( ) ( ) ( )54321 1111 FFFFFFS −⋅⋅⋅−⋅−−=  

( ) ( ) ( )( ) 54321 11111 RRRRRFS ⋅−⋅−⋅−−⋅−=  
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e) 

 

failure tree function tree

x5

y

x5

y

x1 x2
x1 x2

x3
x4

x3 x4 
Figure Solution 5.2e 

( ) ( )( )43521 xxxxxy ∧∨∧∨=  
baS FFF ⋅=  and ( ) ( )21 111 FFFa −⋅−−=  

 ( ) ( )435 111 FFFFb ⋅−⋅−−=  
( ) ( )( ) ( ) ( )( )43521 111111 FFFFFFS ⋅−⋅−−⋅−⋅−−=  

( ) ( ) ( )( )( )43521 11111 RRRRRFS −⋅−−⋅−⋅⋅−=  

Solution 5.3 
a) Fault tree derived from the system description and function sketch: 

failure system chassisy

V T H

xV1 xV2

TL TR HL HR

xTLi xTRi xHLi xHRi  
Figure Solution 5.3a 
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b) Determine the Boolean system function for the failure of the system “under-
carriage”. 
out of a) HTVy ∨∨=  

with  21 VV xxV ∧=  
and  RL TTT ∨=  

with TLi
iL xT
4

1=
∧= , TRi

iR xT
4

1=
∧=  and RL HHH ∧=    

with HLi
iL xH
4

1=
∧=  and HRi

iR xH
4

1=
∧= . 

Inserting into the above equation results to: 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∧∧⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∧∨⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∧∨⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∧∨∧=

====
HRi

i
HLi

i
TRi

i
TLi

i
VV xxxxxxy

4

1

4

1

4

1

4

1
21 . 

c) Determine the system equation for the failure probability FS. 
Out of the additional notes: 

( ) ( ) ( )HTVS FFFF −⋅−⋅−−= 1111  

with 21 VVV FFF ⋅= , ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⋅⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−= ∏∏

==

4

1

4

1

111
i

TRi
i

TLiT FFF  and 

∏∏
==

⋅=
4

1

4

1 i
HRi

i
HLiH FFF . 

d) Determine the Boolean system function for the reliability of the undercarriage. 
Negate the left and right side of the system function out of b) 

HTVy ∨∨=  
Apply de Morgan:   HTVy ∧∧=     with 21 VV xxV ∨=   

and RL TTT ∧= , TLiiL xT
4

1=
∨= and TRiiR xT

4

1=
∨=  

and RL HHH ∨= , HLiiL xH
4

1=
∨=  and HRiiR xH

4

1=
∨=  

⇒ ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∨∨⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∨∧⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∨∧⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∨∧∨=

====
HRiiHLiiTRiiTLiiVV xxxxxxy

4

1

4

1

4

1

4

121 . 

e) i. Determine the system equation for the reliability RS. 
HTVS RRRR ⋅⋅=  (out of the handout or R  = 1−F) 

with ( ) ( )21 111 VVV RRR −⋅−−= , 
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( ) ( )

( ) ( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−−−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−=

∏∏

∏∏

==

==

4

1

4

1

4

1

4

1

1111111

and1111

i
HRi

i
HLiH

i
TRi

i
TLiT

RRR

RRR

. 

  ii. Create the corresponding block diagram 
(out of the Boolean system function for the operability of the system „under-
carriage“). 

V T HE A

V1

V1

TL4

TL1

A

TL3

TL2E

TR3

TR2

TR1

TR4

HR3

HR2

HR1

HR4

HL1

HL2

HL3

HL4  
Figure Solution 5.3f 

Solution 5.4 
 x2 continuously operational x2 continuously failed 

 RI(t) RII(t) 
x4

+
x5x3

x4x1

x5  
Figure Solution 5.4 

( ) III RRRRR ⋅−+⋅= 22 1   
with  ( ) ( )54 111 RRRI −⋅−−=  

 ( ) ( )5341 111 RRRRRII ⋅−⋅⋅−−=  
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( ) ( )( ) ( ) ( ) ( )( )53412542 1111111 RRRRRRRRR ⋅−⋅⋅−−⋅−+−⋅−−= . 
 
Solution 5.5 
a) Determine the system function fort he failure of the control unit. 

( ) ( )( ) 10987654321

87668

96869

4334

106953421

xxxxxxxxxxy
xxxx

xxx
xxx

xxxxxxy

∨∧∨∨∨∨∧∨∨=
∨∨=

∧=
∧=

∨∨∨∨∨=

 

b) Calculate the failure probability of the system. 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )[ ]( ) ( )109876

54321

87668

96869

4334

106953421

111111
11111

1111

1111111

FFFFF
FFFFFF

FFFF
FFF

FFF
FFFFFFF

S

S

−⋅⋅−⋅−⋅−−−⋅
−⋅−⋅−⋅−−=

−⋅−⋅−−=
⋅=
⋅=

−⋅−⋅−⋅−⋅−⋅−−=

 

c) Determine the system function for the operability of the control unit. 
Negation followed by application of the de Morgan law 

( ) ( )( ) 10987654321

87668

96869

4334

106953421

106953421

xxxxxxxxxxy
xxxx

xxx
xxx

xxxxxxy
xxxxxxy

∧∨∧∧∧∧∨∧∧=
∧∧=

∨=
∨=

∧∧∧∧∧=
∨∨∨∨∨=

 

d) Create the block diagram. 
Out of the system function for the operability→  block diagram 

x1

A
x2

x4

x3 x6 x7 x8

x9

x5 x10

E

 
Figure Solution 5.5d 

Solution 6.1 

a) Average:  ∑
=

=
n

i
itn

t
1

1   here: n = 8 

( ) km516259109881260128552242969
8
1 3 .,,,t =⋅+++++++⋅=  
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Standard deviation:  ( )∑
=

−
−

=
n

i
i tt

n
s

1

2

1
1  

( ) ( ) ( )[ ] 6222 10162599816259291625969
18

1
⋅−++−+−⋅

−
= ...s K  

km6539068.s =  

Range:  minmax ttr −=  

( ) km20011510812128 3 ,,r =⋅−=  

b) Ranking order means: ( ) 1111 −=≤ + nitt ii  
thus: sort the values in ascending order  

Table Analysis  

Rank 
i 

Ranking Order 
[ ]kmit  

Failure Probability 

40
30
.n
.iFi +

−
=  

Failure Probability 
(according to the 

table) 

1 12,800 0.083 =   8.3% 8,3% 
2 24,000 0.202 = 20.2% 20.1% 
3 29,000 0.321 = 32.1% 32.0% 
4 52,000 0.440 = 44.0% 44.0% 
5 60,000 0.559 = 55.9% 55.9% 
6 69,000 0.678 = 67.8% 67.9% 
7 98,000 0.797 = 79.7% 79.9% 
8 128,000 0.916 = 91.6% 91.7% 

 
Failure probabilities: 

 calculate  
40
30
.n
.iFi +

−
=  (median) 

 take from table: ( )n,ifFi =  
 

c) Draw in the Weibull network chart (see chart paper) 
Draw a straight line → two parametric 

km00066431 ,T;.b ==  

d) Read from the graph: 
( ) km00014101

10 ,,FB == − ; 

( ) km00052501
50 ,,Ft == − . 
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5%-confidence limit

95%-confidence limit

 
 

Figure Solution 6.1c 

e) Searched for: ( ) ( )11 100070 tF,tR −==  
( ) ( ) %tR%,tF 346600070 11 =→≈=  

f) Take values for the 5% and 95% confidence levels out of the table and enter 
into the graph going out from the straight line, thus line-based confidence lev-
els are determined. 
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Fi

F 5%

F 95%

 
Figure Solution 6.1f 

g) Shape parameter b: 
calculational: (Equation 6.16) 

0081

8
411

431
411

5 .
.

.

n
.

bb median
% =

+
=

+
=  

0282
8
41143141195 ...

n
.bb median% =⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⋅=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⋅=  

graphical: 
42570 .b;.b maxmin ≈≈  

 

Characteristic lifetime T: 
calculational: (Equation 6.14) 

km364046
89

16451
89

1100066

9
16451

9
11

431
3

3

5

.,.,

n
.

n
TT

.

b

%

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅
⋅+

⋅
−⋅=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅+−⋅=

−

−

 

km5578107
72
16451

72
1100066

9
16451

9
11

431
3

3

95

.,.,

n
.

n
TT

.

b

%

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅−−⋅=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅−−⋅=

−

−

 

graphical: 
km000110km00037 955 ,T;,T %% ≈≈  
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Solution 6.2 
a) 10=n : Data is already sorted according to ascending value  

→ Rank order Fi taken from Table A.2, median 
Table Analysis 

Rank i Ranking Order ti Fi (median) in % 
1 470 6.7 
2 550 16.2 
3 600 25.9 
4 800 35.5 
5 1080 45.2 
6 1150 54.8 
7 1450 64.5 
8 1800 74.1 
9 2520 83.8 

10 3030 93.3 
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t0≈400 actuation

curve!
indicates a failure free 
time t0

thus:
- estimate these
- analysis with t1*=ti-t0 

 
Figure Solution 6.2a 
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Draw in the chart → Curve formed by the points on the graph indicate a fail-
ure free time  

→ estimate t0: 4000 ≈t  operations 
Repeat analysis with 0ttt ii −=  

Table Analysis with t0 

I 0tti −  Fi in % 

1 70 6.7 
2 150 16.2 
3 200 25.9 
4 400 35.5 
5 680 45.2 
6 750 54.8 
7 1,050 64.5 
8 1,400 74.1 
9 2,120 83.8 

10 2,630 93.3 
Enter values in a new Weibull chart → Linear approximation is now better  
→ Confirmation that a failure free time exists 
Read parameters: 

950.b = , 4000 =t  

operations33014009309300 ,TtT =+=→=−  

b) Read from the graph:    

 operations4909090 010010 =+=→=− tBtB ; 

operations0401400640640 50050 ,ttt =+=→=−  

c)  Draw in the graph: see Weibull chart 
Table Analysis 

Rank i 0tti −  %5
iF  ( )medianFi  %95

iF  
1 70 0.5116 6.7 25.8866 
2 150 3.6771 16.2 39.4163 
3 200 8.7264 25.9 50.6901 
4 400 15.0028 35.5 60.6624 
5 680 22.2441 45.2 69.9493 
6 750 30.3537 54.8 77.7559 
7 1,050 39.3376 64.5 84.9972 
8 1,400 49.3099 74.1 91.2736 
9 2,120 60.5836 83.8 96.3229 

10 2,630 74.1134 93.3 99.4884 
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lifetime (t-t0) ·101 actuation 
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Figure Solution 6.2c 

Solution 6.3 
Sort values and assign Failure probabilities. 
Table Analysis 

i  [ ]LW103⋅it  
40
30
.n
.iFi +

−
=  

1 166 6.7% 
2 198 16.3% 
3 208 26.0% 
4 222 35.6% 
5 242 45.2% 
6 264 54.8% 
7 380 64.4% 
8 382 74.0% 
9 434 83.7% 

10 435 93.3% 
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lifetime t·104LC
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B10=173000LC T =340000LC  
Figure Solution 6.3 

Draw: The entered data points do indicate neither a straight line nor a 
typical curve for a failure free time; it looks more like a mixture 
distribution. 

 Despite this:  Analysis points to a two parametric Weibull 
   distribution    → 00 =t  

Read parameters from the chart:  cycles load 00034043 ,T;.b ==  
Draw in confidence levels. 

Solution 6.4 
Sample size:  8=n  
Number of failures: 5=r  

 
Tested timely parallel and stopped after the 5th failure → Censor type II 

rn ≠ → incomplete or censured 
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Table Analysis 
Rank i  Ranking Order 

[ ]hti  
Median iF  %5%5 iF  %95%95 iF  

1 102   8.3%   0.6% 31.2% 
2 135 22.1%   4.6% 47.0% 
3 167 32.0% 11.1% 60.0% 
4 192 44.0% 19.2% 71.1% 
5 214 56.0% 29.0% 80.7% 

 
 
 

lifetime t·10h 

fa
ilu

re
 p

ro
ba

bi
lit

y 
F(

t) 

sh
ap

e 
pa

ra
m

et
er

 b
 

63.2

99.9

99

90

80
70

50

30

20

10

5

1

2

3
4

0.1

0.2

0.3
0.4

1000
0

0.5

40

3.5

0.5

1.0

1.5

2.0

2.5

3.0

100101

%

PolPol

b=3.2

T=230 h

intersection at
bmax≈5.7

Tmax=370h
(extrapolated)

Tmin=170h

bmin=0.95

 
Figure Solution 6.4 

Draw in graph, read b and T (for T extrapolated!) → h23023 == T;.b  
Draw confidence levels, extrapolate confidence levels  
→ read from graph: h370h17075950 ==== maxminmaxmin T;T;.b;.b  

Taken from the table with 8=n until 5=i ! 
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Solution 6.5 
a) Data is already ordered  ranking order 

== ˆ,n 0751    sample size 
=== ˆ10rn f    number of failures 

Inspection lot size: 

988971
110
1007511

1
≈=+

+
−

=+
+
−

= .,
r

rnk  
 

failures

97 not failed each time

 
Figure Solution 6.5a 

About 97 tractors which have not failed lie between the individual failures:  
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0.711 %
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Figure Solution 6.5a 

Control: 10750771101197 ≈=+⋅ ,   
Draw in the straight line for the first failures; iF  out of the table with 10=n . 
Shift line: 50% value for the straight line for the first failures is assigned a 

new failure probability ( ) %.
.
.

.k
.tF 7110

498
70

40
301

50 ==
+
−

= . The slope b remains 

unchanged; thus, shift the line  straight line for the entire sample. 
Read parameters: h6006741 ,T;.b ==  
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b) Hypothetical ranks: 
001 =+= − jNjj iii  

( )
40
30

1
1 1

.n
.jtF

previosn
jnN i

i
i

i +
−

=
−+
−+

= −  

For “Sudden Death” the “previous” value can be calculated, since the “in-
between” value remains constant:  

here  ( )( ) ( )ri
ikin

jnN i
i 11

11
1 1 =∀

−+⋅−+
−+

= −  

 
 
 

Note: for experimental analysis ( ) ( )111
1 1

+⋅−−+
−+

= −

kin
jnN i

i  

Table Hypothetical ranks 

i it  previous iN  ij  [ ]%iF  
1 99 97 1.099 1.099 0.075 
2 200 195 1.22 2.32 0.189 
3 260 293 1.37 3.69 0.315 
4 300 391 1.56 5.25 0.461 
5 340 489 1.82 7.07 0.630 
6 430 587 2.18 9.25 0.833 
7 499 685 2.72 11.97 1.086 
8 512 783 3.62 15.59 1.423 
9 654 881 5.41 21.00 1.926 

10 760 979 10.76 31.76 2.930 

075110 ,n;r ==  
 

Draw in the graph: h,T;.b 8006771 ==  
 

Comparison with the graphical method: 
• Both methods agree with one another ! 
• Differences only due do drawing inaccuracies ! 

in-between previously failed 
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Figure Solution 6.5b 

Solution 6.6 
a) 8=fn  (f stands for “failure”) 

12=sn  (s stands for “survivor”) 
20=n  =̂  sample size 
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Analysis under consideration of the parts without failure  
⇒ hypothetical ranks ! 
 

( )

( ) 40
30

1
1

110

1

10

,n
,jF

previousn
jnN

niNjjj

i
i

i
i

fiii

+
−

=
−+
−+

=

=∀+==

−

−

 

 

→ Table 

Table  Hypothetical ranks 

i Time in 
103 km 

Without 
failure 

failed previous iN  ij  [ ]%iF  

 5 X      
 6 X      

1 7  X 2 1.10 1.10 3.92 
 19 X      

2 24  X 4 1.17 2.28 9.68 
3 29  X 5 1.17 3.45 15.42 
 32 X      
 39 X      
 40 X      

4 53  X 9 1.46 4.91 22.59 
5 60  X 10 1.46 6.37 29.76 
 65 X      

6 69  X 12 1.62 8.00 37.73 
 70 X      
 76 X      
 85 X      

7 100  X 16 2.60 10.60 50.48 
8 148  X 17 2.60 13.20 63.23 
 157 X      
 160 X      
  12=sn  8=fn      

  20=+= fs nnn     

 
→ Draw in the graph, read the parameters: kmT;.b 310150151 ⋅==  

b) Confidence level → 2 possibilities 
 
 
 
 
 

  

interpolation 
in table 

Vq procedure 
(Chapter 6.5) 
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1) Interpolation with the tables for 5% and 95% with n = 20. 
 

 Procedure: 
• Form whole number rank numbers im , so that 1+<< iii mjm  
• Calculate the increment iii mjj −=∆  

• Read out of the table:  ( ) ( ) ( ) ( ) ;;;; 1
%95%95

1
%5%5

++ iiii mFmFmFmF  
• Interpolation 

( ) ( ) ( )( ) ( )
( ) ( ) ( )( ) ( )iiiii

iiiii

mFjmFmFjF
mFjmFmFjF

%95%95
1

%95%95

%5%5
1

%5%5

+∆⋅−=
+∆⋅−=

+

+  

• Draw in the graph 
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b=1.15

T= 150· 103km

CL by interpolation

CL by Fq-method 

CL by Fq-method 

CL by interpolation

 
Figure Solution 6.6 
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Table  Interpolation 
i  ij  im  ij∆  ( )imF %5 ( )1

%5
+imF ( )ijF %5 ( )imF %95 ( )1

%95
+imF ( )ijF %95

1 1.10 1 0.10 0.256 1.807 0.41 13.911 21.611 14.67 
2 2.28 2 0.28 1.807 4.217 2.48 21.611 28.262 23.47 
3 3.45 3 0.45 4.217 7.135 5.53 28.262 34.366 31.00 
4 4.91 4 0.91 7.135 10.408 10.11 34.366 40.103 39.59 
5 6.37 6 0.37 13.956 17.731 15.35 45.558 50.781 47.49 
6 8.00 8 1.00 21.707 -- 21.707 55.804 -- 55.804 
7 10.60 10 0.60 30.196 34.692 32.89 65.308 69.804 68.01 
8 13.20 13 0.20 44.196 49.219 45.20 78.293 82.269 79.06 
(time-consuming calculation) 
 
 
2) Vq procedure 

n = 20 → can be drawn starting at t5 (b = 1.15) 
Table  Vq procedure 

q  km103⋅qt  qV  qqqo Vtt ⋅=  qqqu Vtt /=  

5 10.8 4 43.2 2.7 
10 20.5 2.9 59.5 7.1 
30 59 1.8 106.2 32.8 
50 106 1.6 169.6 66.3 

80* 215 1.5 322.5 143.3 
90* 290 1.49 432.1 194.6 

*extrapolated 
 
(better) 
Parameter confidence levels: draw, read from graph 

Solution 6.7 
Sample size: 178=n  
Number of failures: 7=r  

 number of transmission which have not failed 171=−= rnns  
Division of the transmissions which have not failed is achieved through an opera-
tional performance distribution. 

1 2 3 4 5 6 7i

failed

not failed

14 14 55 44 19 520

 
Figure Solution 6.7 

Enter these columns 
into the graph 

Enter these columns into the graph 



www.manaraa.com

460      Solutions 

Table  Failure probability over the operational performance distribution  
i  it  Occurrence Prob-

ability ( )itL  
Individual Frequency 

( ) ( )1−−=∆ iii tLtLL  
Number of transmis-
sions “in-between” 

( ) sis nLtn ⋅∆=  
1 18,290 8% 8% 14 
2 35,200 16% 8% 14 
3 51,450 28% 12% 20 
4 51,450 28% 0% 0 
5 89,780 60% 32% 55 
6 130,580 86% 26% 44 
7 160,770 97% 11% 19 
 >160,770  3% 5 
    ∑171  
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Figure Solution 6.7 

Round off so that the value fits 
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Figure Solution 6.7 

Table  Failure probability over hypothetical ranks  
i  it  ( )is tn  Previous iN  ij  [ ]%iF  
1 18,290 14 14 1.08 1.08 0.6 
2 35,200 14 29 1.20 2.28 1.11 
3 51,450 20 50 1.37 3.65 1.87 
4 51,450 0 51 1.37 5.02 2.65 
5 89,780 55 107 2.41 7.44 4.00 
6 130,580 44 152 6.86 14.30 7.85 
7 160,770 19 172 32.93 47.23 26.3 

 
 
 

Read from the chart: km000600551 ,T;.b ==  

Enter these values in the Weibull chart 
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Solution 6.8 
Uncensored = complete   4== rn  
a) Regression + Weibull  Equation (6.70) and Equation (6.71) 

( )

( )( )∑

∑

=

=

−−=

=

n

i
i

n

i
i

F
n

y

t
n

x

1

1

1lnln1

ln1

 

Result: h8483632 .T;.b ==  
b) 989580.KWei =  
c) ( ) 38018.Lln −=  

Solution 6.9 
a) 2 parameters  first two moments are sufficient 

empirical sample moments: 

( ) ( ) ( )∑∑
==

−
−

==
n

i
i

n

i
i tt

n
st

n
t

1

22

1

2
1

111  

 
theoretical moments: 
In comparison with the Weibull distribution for 

1=b  and 0
0

11 tT
tT

+
λ

=→
−

=λ  

( ) ( ) 00
11 t
b

tTtE +⎟
⎠
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⎜
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⎛ +Γ⋅−=   Note:  )!1()( −=Γ nn  
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Moment method: 
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==+
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b) Maximum Likelihood 

( ) ( ) ( )( )∏∏
=

−λ−

=

⋅λ=λ=λ
n

i

tt
n

i
ii

iettfttL
11

00
0,,,,  

logarithmize: ( ) ( )( )∑
=

−λ−⋅λ=
n

i

ttieL
1

0lnln  
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c) Regression: 
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Transformation: 

( )( ) ( ) 001ln tttttF ⋅λ+⋅λ−=−⋅λ−=−  
 
 
 
Transformed failure probabilities: 
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Out of the appendix: 
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ctm 0  

Solution 8.1 
a) km25000010 =B  

 
 
→ required reliability ( ) %9010 == BtR  
confidence level %95=AP  
 

Look in the table for the 95% confidence level for the column whose value for 
1=i  is just less than 10% ⇒ n  

here (extract): 
 
Table  Extract from the 95% confidence level 

 27=n  28=n  29=n  30=n  
1=i  10.502 10.147 9.814 9.503 
2=i  16.397 15.851 15.340 14.859 

Thus: 29=n  
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(Result matches the result from a) very well!) 

c) km150000=maxtestt  and km250000=sollt  
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failure probability ( ) %1010 == BtF  
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!Getriebe62=erfn  

d) sollvtesttest tLt?t;n ⋅===15  
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e) Larson nomogram:  %Rx;n;.PA 76330950 =→===  

f) Larson nomogram:  !%Px;n;.R A 3133090 =→===  

g) Larson nomogram: 
 50308080390950 =−=−=→=→=== nnnnx;.R;.P notw
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Figure Solution 8.1e-g 

b)ausˆ n=
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h) According to Beyer/Lauster, with the previous knowledge 9,00 =R  (with a 
confidence level of 63,2%): 

( )
( ) ( )

( )
( ) 1993184994328

90
1

1
90
9501

1
1

1
111

51

0

≈=−=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛

−
−

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
⋅=

...

.
ln.ln

.ln

*

R
ln

Rln
Pln

L
n

.

A
b
v

 

i) Equation (*) out of h) solved for tLt vtest ⋅= : 
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99.999 %959080706050
confidence level PA (inspection plan)
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   tp=LV·t=1.4·250000km
     =350000kmi) n≈12

h) n≈19  
Figure Solution 8.1h-i 

Solution 8.2 
1;2 == xn  

Failures during the test → generalized binomial approach 
( ) 111 −⋅−⋅−−= nn

A RRnRP  for 1=x  
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Solution 8.4 
Given: ( ) %BR,B 90km000250 1010 =→=  
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b) Previous knowledge: km1051 6⋅= .T  
Beyer/Lauster: previous knowledge ( )100 BR  required ! 
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Solution 10.1 
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Solution 10.2 
Duration availability of an individual component: 
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The following equation is valid for three identical components: 
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Solution 10.3 

( )311 DiDS AA −−=  
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% 9099901111 33 =−−=−−=⇒ .AA DSDi  

Solution 10.4 

( )311 DiDS AA −−=  
The following equation is valid for one individual component: 
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a)  ( ) ( )( ) 32321                 ; 111 DDDDDDS AAAAAA =−⋅−−⋅=  
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Solution 10.6 
a) S(t) = stock at the point in time t  

I = initial stock 
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Appendix 

Table A.1. 5 %-confidence limit 

Table A.1.1. Failure probability in % for the 5 %-confidence limit for a sample 
size of n (1 ≤ n ≤ 10) and the rank i  

 n = 1 2 3 4 5 6 7 8 9 10 
i =1 5,0000 2,5321 1,6952 1,2742 1,0206 0,8512 0,7301 0,6391 0,5683 0,5116 

2 22,3607 13,5350 9,7611 7,6441 6,2850 5,3376 4,6389 4,1023 3,6771 
3  36,8403 24,8604 18,9256 15,3161 12,8757 11,1113 9,7747 8,7264 
4   47,2871 34,2592 27,1338 22,5321 19,2903 16,8750 15,0028 
5   54,9281 41,8197 34,1261 28,9241 25,1367 22,2441 
6   60,6962 47,9298 40,0311 34,4941 30,3537 
7   65,1836 52,9321 45,0358 39,3376 
8   68,7656 57,0864 49,3099 
9   71,6871 60,5836 

10    74,1134 
 

Table A.1.2. Failure probability in % for the 5 %-confidence limit for a sample 
size of n (11 ≤ n ≤ 20) and the rank i 

 n = 11 12 13 14 15 16 17 18 19 20 
i =1 0,4652 0,4265 0,3938 0,3657 0,3414 0,3201 0,3013 0,2846 0,2696 0,2561 

2 3,3319 3,0460 2,8053 2,5999 2,4226 2,2679 2,1318 2,0111 1,9033 1,8065 
3 7,8820 7,1870 6,6050 6,1103 5,6847 5,3146 4,9898 4,7025 4,4465 4,2169 
4 13,5075 12,2851 11,2666 10,4047 9,6658 9,0252 8,4645 7,9695 7,5294 7,1354 
5 19,9576 18,1025 16,5659 15,2718 14,1664 13,2111 12,3771 11,6426 10,9906 10,4081 
6 27,1250 24,5300 22,3955 20,6073 19,0865 17,7766 16,6363 15,6344 14,7469 13,9554 
7 34,9811 31,5238 28,7049 26,3585 24,3727 22,6692 21,1908 19,8953 18,7504 17,7311 
8 43,5626 39,0862 35,4799 32,5028 29,9986 27,8602 26,0114 24,3961 22,9721 21,7069 
9 52,9913 47,2674 42,7381 39,0415 35,9566 33,3374 31,0829 29,1201 27,3946 25,8651 

10 63,5641 56,1894 50,5350 45,9995 42,2556 39,1011 36,4009 34,0598 32,0087 30,1954 
11 76,1596 66,1320 58,9902 53,4343 48,9248 45,1653 41,9705 39,2155 36,8115 34,6931 
12 77,9078 68,3660 61,4610 56,0216 51,5604 47,8083 44,5955 41,8064 39,3585 
13  79,4184 70,3266 63,6558 58,3428 53,9451 50,2172 47,0033 44,1966 
14   80,7364 72,0604 65,6175 60,4358 56,1118 52,4203 49,2182 
15   81,8964 73,6042 67,3807 62,3321 58,0880 54,4417 
16   82,9251 74,9876 68,9738 64,0574 59,8972 
17   83,8434 76,2339 70,4198 65,6336 
18   84,6683 77,3626 71,7382 
19   85,4131 78,3894 
20    86,0891 
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Table A.1.3. Failure probability in % for the 5 %-confidence limit for a sample 
size of n (21 ≤ n ≤ 30) and the rank i 

 n = 21 22 23 24 25 26 27 28 29 30 
i=1 0,2440 0,2329 0,2228 0,2135 0,2050 0,1971 0,1898 0,1830 0,1767 0,1708 

2 1,7191 1,6397 1,5674 1,5012 1,4403 1,3842 1,3323 1,2841 1,2394 1,1976 
3 4,0100 3,8223 3,6515 3,4953 3,3520 3,2199 3,0978 2,9847 2,8796 2,7816 
4 6,7806 6,4596 6,1676 5,9008 5,6563 5,4312 5,2233 5,0308 4,8520 4,6855 
5 9,8843 9,4109 8,9809 8,5885 8,2291 7,8986 7,5936 7,3114 7,0494 6,8055 
6 13,2448 12,6034 12,0215 11,4911 11,0056 10,5597 10,1485 9,7682 9,4155 9,0874 
7 16,8176 15,9941 15,2480 14,5686 13,9475 13,3774 12,8522 12,3669 11,9169 11,4987 
8 20,5750 19,5562 18,6344 17,7961 17,0304 16,3282 15,6819 15,0851 14,5322 14,0185 
9 24,4994 23,2724 22,1636 21,1566 20,2378 19,3960 18,6220 17,9077 17,2465 16,6326 

10 28,5801 27,1313 25,8243 24,6389 23,5586 22,5700 21,6617 20,8243 20,0496 19,3308 
11 32,8109 31,1264 29,6093 28,2356 26,9853 25,8424 24,7934 23,8271 22,9340 22,1059 
12 37,1901 35,2544 33,5148 31,9421 30,5130 29,2082 28,0120 26,9111 25,8944 24,9526 
13 41,7199 39,5156 37,5394 35,7564 34,1389 32,6642 31,3139 30,0725 28,9271 27,8669 
14 46,4064 43,9132 41,6845 39,6785 37,8622 36,2089 34,6972 33,3090 32,0296 30,8464 
15 51,2611 48,4544 45,9544 43,7107 41,6838 39,8424 38,1613 36,6197 35,2005 33,8893 
16 56,3024 53,1506 50,3565 47,8577 45,6067 43,5663 41,7069 40,0044 38,4392 36,9948 
17 61,5592 58,0200 54,9025 52,1272 49,6359 47,3838 45,3360 43,4645 41,7464 40,1629 
18 67,0789 63,0909 59,6101 56,5309 53,7791 51,3002 49,0522 47,0021 45,1235 43,3945 
19 72,9448 68,4087 64,5067 61,0861 58,0480 55,3234 52,8608 50,6211 48,5730 46,6914 
20 79,3275 74,0533 69,6362 65,8192 62,4595 59,4646 56,7698 54,3269 52,0988 50,0561 
21 86,7054 80,1878 75,0751 70,7727 67,0392 63,7405 60,7902 58,1272 55,7064 53,4927 
22 87,2695 80,9796 76,0199 71,8277 68,1758 64,9380 62,0330 59,4034 57,0066 
23  87,7876 81,7108 76,8960 72,8098 69,2374 66,0598 63,2004 60,6053 
24   88,2654 82,3879 77,7107 73,7261 70,2309 67,1127 64,2991 
25   88,7072 83,0169 78,4700 74,5830 71,1628 68,1029 
26   89,1170 83,6026 79,1795 75,3861 72,0385 
27   89,4981 84,1493 79,8439 76,1402 
28   89,8534 84,6608 80,4674 
29   90,1855 85,1404 
30    90,4966 
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Table A.2. Median values 

Tabelle A.2.1. Median values in % for a sample size of n (1 ≤ n ≤ 10) and the 
rank i 

 n = 1 2 3 4 5 6 7 8 9 10 
i =1 50,0000 29,2893 20,6299 15,9104 12,9449 10,9101 9,4276 8,2996 7,4125 6,6967 

2 70,7107 50,0000 38,5728 31,3810 26,4450 22,8490 20,1131 17,9620 16,2263 
3  79,3700 61,4272 50,0000 42,1407 36,4116 32,0519 28,6237 25,8575 
4   84,0896 68,6190 57,8593 50,0000 44,0155 39,3085 35,5100 
5   87,0550 73,5550 63,5884 55,9845 50,0000 45,1694 
6   89,0899 77,1510 67,9481 60,6915 54,8306 
7   90,5724 79,8869 71,3763 64,4900 
8   91,7004 82,0380 74,1425 
9   92,5875 83,7737 

10    93,3033 
 

Tabe A.2.2. Median values in % for a sample size of n (11 ≤ n ≤ 20) and the rank 
i 

 n = 11 12 13 14 15 16 17 18 19 20 
i =1 6,1069 5,6126 5,1922 4,8305 4,5158 4,2397 3,9953 3,7776 3,5824 3,4064 

2 14,7963 13,5979 12,5791 11,7022 10,9396 10,2703 9,6782 9,1506 8,6775 8,2510 
3 23,5785 21,6686 20,0449 18,6474 17,4321 16,3654 15,4218 14,5810 13,8271 13,1474 
4 32,3804 29,7576 27,5276 25,6084 23,9393 22,4745 21,1785 20,0238 18,9885 18,0550 
5 41,1890 37,8529 35,0163 32,5751 30,4520 28,5886 26,9400 25,4712 24,1543 22,9668 
6 50,0000 45,9507 42,5077 39,5443 36,9671 34,7050 32,7038 30,9207 29,3220 27,8805 
7 58,8110 54,0493 50,0000 46,5147 43,4833 40,8227 38,4687 36,3714 34,4909 32,7952 
8 67,6195 62,1471 57,4923 53,4853 50,0000 46,9408 44,2342 41,8226 39,6603 37,7105 
9 76,4215 70,2424 64,9837 60,4557 56,5167 53,0592 50,0000 47,2742 44,8301 42,6262 

10 85,2037 78,3314 72,4724 67,4249 63,0330 59,1774 55,7658 52,7258 50,0000 47,5421 
11 93,8931 86,4021 79,9551 74,3916 69,5480 65,2950 61,5313 58,1774 55,1699 52,4580 
12 94,3874 87,4209 81,3526 76,0607 71,4114 67,2962 63,6286 60,3397 57,3738 
13  94,8078 88,2978 82,5679 77,5255 73,0600 69,0793 65,5091 62,2895 
14   95,1695 89,0604 83,6346 78,8215 74,5288 70,6780 67,2048 
15   95,4842 89,7297 84,5782 79,9762 75,8457 72,1195 
16   95,7603 90,3218 85,4190 81,0115 77,0332 
17   96,0047 90,8494 86,1729 81,9450 
18   96,2224 91,3225 86,8526 
19   96,4176 91,7490 
20    96,5936 
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Table A.2.3. Median values in % for a sample size of n (21 ≤ n ≤ 30) and the rank 
i 

 n = 21 22 23 24 25 26 27 28 29 30 
i =1 3,2468 3,1016 2,9687 2,8468 2,7345 2,6307 2,5345 2,4451 2,3618 2,2840 

2 7,8644 7,5124 7,1906 6,8952 6,6231 6,3717 6,1386 5,9221 5,7202 5,5317 
3 12,5313 11,9704 11,4576 10,9868 10,5533 10,1526 9,7813 9,4361 9,1145 8,8141 

4 17,2090 16,4386 15,7343 15,0879 14,4925 13,9422 13,4323 12,9583 12,5166 12,1041 
5 21,8905 20,9107 20,0147 19,1924 18,4350 17,7351 17,0864 16,4834 15,9216 15,3968 
6 26,5740 25,3844 24,2968 23,2986 22,3791 21,5294 20,7419 20,0100 19,3279 18,6909 
7 31,2584 29,8592 28,5798 27,4056 26,3241 25,3246 24,3983 23,5373 22,7350 21,9857 
8 35,9434 34,3345 32,8634 31,5132 30,2695 29,1203 28,0551 27,0651 26,1426 25,2809 
9 40,6288 38,8102 37,1473 35,6211 34,2153 32,9163 31,7123 30,5932 29,5504 28,5764 

10 45,3144 43,2860 41,4315 39,7292 38,1613 36,7125 35,3696 34,1215 32,9585 31,8721 
11 50,0000 47,7620 45,7157 43,8375 42,1075 40,5089 39,0271 37,6500 36,3667 35,1679 
12 54,6856 52,2380 50,0000 47,9458 46,0537 44,3053 42,6847 41,1785 39,7749 38,4639 
13 59,3712 56,7140 54,2843 52,0542 50,0000 48,1018 46,3423 44,7071 43,1833 41,7599 
14 64,0566 61,1898 58,5685 56,1625 53,9463 51,8982 50,0000 48,2357 46,5916 45,0559 
15 68,7416 65,6655 62,8527 60,2708 57,8925 55,6947 53,6577 51,7643 50,0000 48,3520 
16 73,4260 70,1408 67,1366 64,3789 61,8386 59,4911 57,3153 55,2929 53,4084 51,6480 
17 78,1095 74,6156 71,4202 68,4868 65,7847 63,2875 60,9729 58,8215 56,8167 54,9441 
18 82,7911 79,0894 75,7032 72,5944 69,7305 67,0837 64,6304 62,3500 60,2251 58,2401 
19 87,4687 83,5614 79,9853 76,7014 73,6759 70,8797 68,2877 65,8785 63,6333 61,5361 
20 92,1356 88,0296 84,2657 80,8076 77,6209 74,6754 71,9449 69,4068 67,0415 64,8320 
21 96,7532 92,4876 88,5425 84,9121 81,5650 78,4706 75,6017 72,9349 70,4496 68,1279 
22 96,8984 92,8094 89,0132 85,5075 82,2649 79,2581 76,4627 73,8574 71,4236 
23  97,0313 93,1048 89,4467 86,0578 82,9136 79,9900 77,2650 74,7191 
24   97,1532 93,3769 89,8474 86,5677 83,5166 80,6721 78,0143 
25   97,2655 93,6283 90,2187 87,0417 84,0784 81,3091 
26   97,3693 93,8614 90,5639 87,4834 84,6032 
27   97,4655 94,0779 90,8855 87,8959 
28   97,5549 94,2798 91,1859 
29   97,6382 94,4683 
30    97,7160 
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Table A.3. 95 %-confidence limit  

Table A.3.1. Failure probability in % for the 95 %-confidence limit for a sample 
size of n (1 ≤ n ≤ 10) and the rank i 

 n = 1 2 3 4 5 6 7 8 9 10 
i =1 95,0000 77,6393 63,1597 52,7129 45,0720 39,3038 34,8164 31,2344 28,3129 25,8866 

2 97,4679 86,4650 75,1395 65,7408 58,1803 52,0703 47,0679 42,9136 39,4163 
3  98,3047 90,2389 81,0744 72,8662 65,8738 59,9689 54,9642 50,6901 
4   98,7259 92,3560 84,6839 77,4679 71,0760 65,5058 60,6624 
5   98,9794 93,7150 87,1244 80,7097 74,8633 69,6463 
6   99,1488 94,6624 88,8887 83,1250 77,7559 
7   99,2699 95,3611 90,2253 84,9972 
8   99,3609 95,8977 91,2736 
9   99,4317 96,3229 

10    99,4884 
 

Table A.3.2. Failure probability in % for the 95 %-confidence limit for a sample 
size of n (11 ≤ n ≤ 20) and the rank i 

 n = 11 12 13 14 15 16 17 18 19 20 
i =1 23,8404 22,0922 20,5817 19,2636 18,1036 17,0750 16,1566 15,3318 14,5868 13,9108 

2 36,4359 33,8681 31,6339 29,6734 27,9396 26,3957 25,0125 23,7661 22,6375 21,6106 
3 47,0087 43,8105 41,0099 38,5389 36,3442 34,3825 32,6193 31,0263 29,5802 28,2619 
4 56,4374 52,7326 49,4650 46,5656 43,9785 41,6572 39,5641 37,6679 35,9425 34,3664 
5 65,0188 60,9137 57,2620 54,0005 51,0752 48,4397 46,0550 43,8883 41,9120 40,1028 
6 72,8750 68,4763 64,5201 60,9585 57,7444 54,8347 52,1918 49,7828 47,5797 45,5582 
7 80,0424 75,4700 71,2951 67,4972 64,0435 60,8989 58,0295 55,4046 52,9967 50,7818 
8 86,4925 81,8975 77,6045 73,6415 70,0013 66,6626 63,5991 60,7845 58,1935 55,8034 
9 92,1180 87,7149 83,4341 79,3926 75,6273 72,1397 68,9171 65,9402 63,1885 60,6415 

10 96,6681 92,8130 88,7334 84,7282 80,9135 77,3308 73,9886 70,8799 67,9913 65,3069 
11 99,5348 96,9540 93,3950 89,5953 85,8336 82,2234 78,8092 75,6039 72,6054 69,8046 
12 99,5735 97,1947 93,8897 90,3342 86,7889 83,3638 80,1047 77,0279 74,1349 
13  99,6062 97,4001 94,3153 90,9748 87,6229 84,3656 81,2496 78,2931 
14   99,6343 97,5774 94,6854 91,5355 88,3574 85,2530 82,2689 
15   99,6586 97,7321 95,0102 92,0305 89,0093 86,0446 
16   99,6799 97,8682 95,2975 92,4706 89,5919 
17   99,6987 97,9889 95,5535 92,8646 
18   99,7154 98,0967 95,7831 
19   99,7304 98,1935 
20    99,7439 
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Table A.3.3. Failure probability in % for the 95 %-confidence limit for a sample 
size of n (21 ≤ n ≤ 30) and the rank i 

 n = 21 22 23 24 25 26 27 28 29 30 
i =1 13,2946 12,7306 12,2123 11,7346 11,2928 10,8830 10,5019 10,1466 9,8145 9,5034 

2 20,6725 19,8122 19,0204 18,2893 17,6121 16,9831 16,3975 15,8507 15,3392 14,8596 
3 27,0552 25,9467 24,9249 23,9801 23,1040 22,2893 21,5300 20,8205 20,1561 19,5326 
4 32,9211 31,5913 30,3637 29,2273 28,1723 27,1902 26,2739 25,4170 24,6139 23,8598 
5 38,4408 36,9091 35,4932 34,1807 32,9608 31,8242 30,7627 29,7691 28,8372 27,9615 
6 43,6976 41,9800 40,3899 38,9139 37,5405 36,2595 35,0620 33,9402 32,8873 31,8971 
7 48,7389 46,8494 45,0975 43,4692 41,9520 40,5354 39,2098 37,9670 36,7995 35,7009 
8 53,5936 51,5456 49,6435 47,8728 46,2209 44,6767 43,2302 41,8728 40,5966 39,3947 
9 58,2801 56,0868 54,0456 52,1423 50,3642 48,6998 47,1391 45,6731 44,2936 42,9934 

10 62,8099 60,4844 58,3155 56,2893 54,3933 52,6162 50,9478 49,3789 47,9012 46,5073 
11 67,1891 64,7456 62,4607 60,3215 58,3162 56,4337 54,6640 52,9979 51,4270 49,9439 
12 71,4200 68,8737 66,4853 64,2436 62,1378 60,1576 58,2931 56,5355 54,8765 53,3086 
13 75,5005 72,8687 70,3906 68,0579 65,8611 63,7911 61,8387 59,9956 58,2536 56,6055 
14 79,4250 76,7276 74,1757 71,7645 69,4871 67,3358 65,3028 63,3803 61,5608 59,8371 
15 83,1824 80,4437 77,8364 75,3611 73,0147 70,7918 68,6861 66,6909 64,7996 63,0052 
16 86,7552 84,0059 81,3656 78,8434 76,4414 74,1576 71,9880 69,9275 67,9704 66,1108 
17 90,1156 87,3966 84,7520 82,2040 79,7622 77,4300 75,2066 73,0889 71,0728 69,1536 
18 93,2193 90,5891 87,9785 85,4313 82,9696 80,6039 78,3383 76,1728 74,1056 72,1331 
19 95,9901 93,5404 91,0191 88,5089 86,0525 83,6718 81,3780 79,1757 77,0660 75,0474 
20 98,2809 96,1776 93,8324 91,4115 88,9944 86,6226 84,3181 82,0923 79,9504 77,8941 
21 99,7560 98,3603 96,3485 94,0992 91,7709 89,4404 87,1478 84,9149 82,7535 80,6691 
22 99,7671 98,4326 96,5047 94,3437 92,1014 89,8515 87,6331 85,4678 83,3674 
23  99,7772 98,4988 96,6480 94,5688 92,4064 90,2318 88,0831 85,9815 
24   99,7865 98,5597 96,7801 94,7767 92,6886 90,5845 88,5013 
25   99,7950 98,6158 96,9022 94,9692 92,9506 90,9126 
26   99,8029 98,6677 97,0153 95,1480 93,1944 
27   99,8102 98,7159 97,1204 95,3145 
28   99,8170 98,7606 97,2184 
29   99,8233 98,8024 
30          99,8292 
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Table A.4. Standard Normal Distribution 

The table contains values of the Standard Normal Distribution 
( ) ( )1,0 =σ=µ=φ NVx  for 0≥x . For 0<x  one considers ( ) ( )xx φ−=−φ 1 .  

Transformation of a Normal Distribution: 
σ
µ−

=
tx .  

Transformation of a LogNormal Distribution: 
( )

σ
µ−−

= 0ln tt
x . 

 
x +0,00 +0,01 +0,02 +0,03 +0,04 +0,05 +0,06 +0,07 +0,08 +0,09 

0,0 0,5000 0,5040 0,5080 0,5120 0,5160 0,5199 0,5239 0,5279 0,5319 0,5359 
0,1 0,5398 0,5438 0,5478 0,5517 0,5557 0,5596 0,5636 0,5675 0,5714 0,5753 
0,2 0,5793 0,5832 0,5871 0,5910 0,5948 0,5987 0,6026 0,6064 0,6103 0,6141 
0,3 0,6179 0,6217 0,6255 0,6293 0,6331 0,6368 0,6406 0,6443 0,6480 0,6517 
0,4 0,6554 0,6591 0,6628 0,6664 0,6700 0,6736 0,6772 0,6808 0,6844 0,6879 
0,5 0,6915 0,6950 0,6985 0,7019 0,7054 0,7088 0,7123 0,7157 0,7190 0,7224 
0,6 0,7257 0,7291 0,7324 0,7357 0,7389 0,7422 0,7454 0,7486 0,7517 0,7549 
0,7 0,7580 0,7611 0,7642 0,7673 0,7704 0,7734 0,7764 0,7794 0,7823 0,7852 
0,8 0,7881 0,7910 0,7939 0,7967 0,7995 0,8023 0,8051 0,8078 0,8106 0,8133 
0,9 0,8159 0,8186 0,8212 0,8238 0,8264 0,8289 0,8315 0,8340 0,8365 0,8389 
1,0 0,8413 0,8438 0,8461 0,8485 0,8508 0,8531 0,8554 0,8577 0,8599 0,8621 
1,1 0,8643 0,8665 0,8686 0,8708 0,8729 0,8749 0,8770 0,8790 0,8810 0,8830 
1,2 0,8849 0,8869 0,8888 0,8907 0,8925 0,8944 0,8962 0,8980 0,8997 0,9015 
1,3 0,9032 0,9049 0,9066 0,9082 0,9099 0,9115 0,9131 0,9147 0,9162 0,9177 
1,4 0,9192 0,9207 0,9222 0,9236 0,9251 0,9265 0,9279 0,9292 0,9306 0,9319 
1,5 0,9332 0,9345 0,9357 0,9370 0,9382 0,9394 0,9406 0,9418 0,9429 0,9441 
1,6 0,9452 0,9463 0,9474 0,9484 0,9495 0,9505 0,9515 0,9525 0,9535 0,9545 
1,7 0,9554 0,9564 0,9573 0,9582 0,9591 0,9599 0,9608 0,9616 0,9625 0,9633 
1,8 0,9641 0,9649 0,9656 0,9664 0,9671 0,9678 0,9686 0,9693 0,9699 0,9706 
1,9 0,9713 0,9719 0,9726 0,9732 0,9738 0,9744 0,9750 0,9756 0,9761 0,9767 
2,0 0,9772 0,9778 0,9783 0,9788 0,9793 0,9798 0,9803 0,9808 0,9812 0,9817 
2,1 0,9821 0,9826 0,9830 0,9834 0,9838 0,9842 0,9846 0,9850 0,9854 0,9857 
2,2 0,9861 0,9864 0,9868 0,9871 0,9875 0,9878 0,9881 0,9884 0,9887 0,9890 
2,3 0,9893 0,9896 0,9898 0,9901 0,9904 0,9906 0,9909 0,9911 0,9913 0,9916 
2,4 0,9918 0,9920 0,9922 0,9925 0,9927 0,9929 0,9931 0,9932 0,9934 0,9936 
2,5 0,9938 0,9940 0,9941 0,9943 0,9945 0,9946 0,9948 0,9949 0,9951 0,9952 
2,6 0,9953 0,9955 0,9956 0,9957 0,9959 0,9960 0,9961 0,9962 0,9963 0,9964 
2,7 0,9965 0,9966 0,9967 0,9968 0,9969 0,9970 0,9971 0,9972 0,9973 0,9974 
2,8 0,9974 0,9975 0,9976 0,9977 0,9977 0,9978 0,9979 0,9979 0,9980 0,9981 
2,9 0,9981 0,9982 0,9982 0,9983 0,9984 0,9984 0,9985 0,9985 0,9986 0,9986 
3,0 0,9987 0,9987 0,9987 0,9988 0,9988 0,9989 0,9989 0,9989 0,9990 0,9990 
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Table A.5. Gamma Function 

The Gamma function was defined by Euler as improper parameter integral (sec-

ond Euler integral): For real number 0>x  is ( ) ∫
∞

−−=Γ
0

1·· dttex xt .  

The following functional equations are valid:  

( ) 11 ==Γ x , ( ) ( )xxx Γ=+Γ ·1 , ( ) ( )
x

xx 1+Γ
=Γ , ( ) ( ) ( )1·1 −Γ−=Γ xxx . 

 
x Γ(x)  x Γ(x)  x Γ(x)  x Γ(x) 

1,00 1  1,25 0,906402477 1,50 0,886226925 1,75 0,919062527 
1,01 0,994325851  1,26 0,904397118 1,51 0,886591685 1,76 0,921374885 
1,02 0,988844203  1,27 0,902503064 1,52 0,887038783 1,77 0,923763128 
1,03 0,983549951  1,28 0,900718476 1,53 0,887567628 1,78 0,926227306 
1,04 0,978438201  1,29 0,899041586 1,54 0,888177659 1,79 0,92876749 
1,05 0,973504266  1,30 0,897470696 1,55 0,888868348 1,80 0,931383771 
1,06 0,968743649  1,31 0,896004177 1,56 0,889639199 1,81 0,934076258 
1,07 0,964152042  1,32 0,894640463 1,57 0,890489746 1,82 0,936845083 
1,08 0,959725311  1,33 0,893378053 1,58 0,891419554 1,83 0,939690395 
1,09 0,955459488  1,34 0,892215507 1,59 0,892428214 1,84 0,942612363 
1,10 0,95135077  1,35 0,891151442 1,60 0,893515349 1,85 0,945611176 
1,11 0,947395504  1,36 0,890184532 1,61 0,894680608 1,86 0,948687042 
1,12 0,943590186  1,37 0,889313507 1,62 0,895923668 1,87 0,951840185 
1,13 0,93993145  1,38 0,888537149 1,63 0,897244233 1,88 0,955070853 
1,14 0,936416066  1,39 0,887854292 1,64 0,89864203 1,89 0,958379308 
1,15 0,933040931  1,40 0,887263817 1,65 0,900116816 1,90 0,961765832 
1,16 0,929803067  1,41 0,886764658 1,66 0,901668371 1,91 0,965230726 
1,17 0,926699611  1,42 0,88635579 1,67 0,903296499 1,92 0,968774309 
1,18 0,923727814  1,43 0,886036236 1,68 0,90500103 1,93 0,972396918 
1,19 0,920885037  1,44 0,885805063 1,69 0,906781816 1,94 0,976098907 
1,20 0,918168742  1,45 0,88566138 1,70 0,908638733 1,95 0,979880651 
1,21 0,915576493  1,46 0,885604336 1,71 0,91057168 1,96 0,98374254 
1,22 0,913105947  1,47 0,885633122 1,72 0,912580578 1,97 0,987684984 
1,23 0,910754856  1,48 0,885746965 1,73 0,914665371 1,98 0,991708409 
1,24 0,908521058  1,49 0,885945132 1,74 0,916826025 1,99 0,99581326 

    2,00 1 

 
Examples: 
a) ( ) 891151442,035,1 =Γ  

b) ( ) ( ) 51649797137,1
8,0

931383771,0
8,0
8,18,0 ==

Γ
=Γ  

c) ( ) ( ) ( ) 42397,2918168742,0·2,1·2,22,1·2,1·2,22,2·2,22,3 ==Γ=Γ=Γ  
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Graphics for the determination of the confidence interval according to the                     
Vq-procedure: 
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Fig. A1 Confidence interval of t1-lifetime values (q = 1 %) for different b-
values according to the Vq-procedure [VDA 4.2] 
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Fig. A2 Confidence interval of t3-lifetime values (q = 3 %) for different b-
values according to the Vq-procedure [VDA 4.2] 
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Fig. A3 Confidence interval of t5-lifetime values (q = 5 %) for different b-

values according to the Vq-procedure [VDA 4.2] 
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Fig. A4 Confidence interval of t10-lifetime values (q = 10 %) for different b-

values according to the Vq-procedure [VDA 4.2] 
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Fig. A5 Confidence interval of t30-lifetime values (q = 30 %) for different b-

values according to the Vq-procedure [VDA 4.2] 
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Fig. A6 Confidence interval of t50-lifetime values (q = 50 %) for different b-
values according to the Vq-procedure [VDA 4.2] 
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Fig. A7 Confidence interval of t80-lifetime values (q = 80 %) for different b-

values according to the Vq-procedure [VDA 4.2]  
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Fig. A8 Confidence interval of t90-lifetime values (q = 90 %) for different b-
values according to the Vq-procedure [VDA 4.2] 
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Fig. A9 Beyer-Lauster Nomogramm 
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Fig. A10 Larson-Nomogramm 
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Fig. A11 Weibull net 
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